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Abstract. Embedded database engines such as SQLite provide a convenient data persistence
layer and have spread along with the applications using them to many types of systems, in-
cluding interactive devices such as smartphones. Android, the most widely-distributed smart-
phone platform, both uses SQLite internally and provides interfaces encouraging apps to use
SQLite to store their own private structured data. As similar functionality appears in all
major mobile operating systems, embedded database performance affects the response times
and resource consumption of billions of smartphones and the millions of apps that run on
them—making it more important than ever to characterize smartphone embedded database
workloads. To do so, we present results from an experiment which recorded SQLite activ-
ity on 11 Android smartphones during one month of typical usage. Our analysis shows that
Android SQLite usage produces queries and access patterns quite different from canonical
server workloads. We argue that evaluating smartphone embedded databases will require a
new benchmarking suite and we use our results to outline some of its characteristics.
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1 Introduction

The world’s 2 billion smartphones represent the most powerful and pervasive distributed system ever
built. Open application marketplaces, such as the Google Play Store, have resulted in a vibrant
software ecosystem comprising millions of smartphone and tablet apps in hundreds of different
categories that both meet existing user needs and provide exciting novel capabilities. As mobile
apps and devices become even more central to the personal computing experience, it is increasingly
important to understand and improve their performance.

A common requirement of mobile apps and systems is persisting structured private data, a
task that is frequently performed using an embedded database such as SQLite [18]. Android, the
open-source and widely-used smartphone platform, provides interfaces that simplify the process
of accessing private SQLite databases, and many apps make use of SQLite for this purpose. In
addition, Android platform services themselves make heavy use of SQLite, as do built-in apps
(Mail, Contacts), popular apps (Gmail, Maps), and libraries (Google Play Services) distributed
by Google. As a result, the large and growing number of mobile apps using embedded databases
represent a new and important class of database clients.

Unsurprisingly, mobile app usage of embedded databases is quite different from the workloads
experienced by database servers supporting websites or big data applications. For example, while
database servers are frequently tested and tuned for continuous high-throughput query processing,
embedded databases experience lower-volume but bursty workloads produced by interactive use. As
another example, enterprise database servers are frequently provisioned to have exclusive access to



an entire machine, while apps using embedded databases compete for shared system resources with
other apps and may be affected by system-wide policies that attempt to conserve limited energy
on battery-constrained mobile devices. So while the fundamental challenges experienced by mobile
apps using embedded databases—minimizing energy consumption, latency, and disk utilization—
are familiar ground for database researchers, the specific tradeoffs produced by this domain’s specific
workload characteristics are far less well understood.

In this paper, we present results drawn from a one-month trace of SQLite activity on 11 Phone-
Lab [16] smartphones running the Android smartphone platform. Our analysis shows that the
workloads experienced by SQLite on these phones differ substantially from the database workloads
expressed by popular database benchmarking suites. We argue that a new benchmark for mobile em-
bedded databases is required to effectively measure their performance, and that such a benchmark
could spur innovation in this area.

Our specific contributions are as follows: (a) A month-long trace of SQLite usage under real
world conditions (details in Section 2), (b) An in-depth analysis of the complexity (Section 3) and
runtime (Section 4) characteristics of SQL statements evaluated by SQLite during this trace, (c) A
comparison of these characteristics to existing benchmarking strategies (Section 5), and (d) An
overview of the requirements for a new “pocket data” benchmark: TPC-MOBILE (Section 6).

2 Experimental Setup

To collect and analyze SQLite queries generated by Android, we used the unique capabilities of
the PhoneLab smartphone platform testbed located at the University at Buffalo (UB). Approx-
imately 200 UB students, faculty, and staff use instrumented LG Nexus 5 smartphones as their
primary device and receive discounted service in return for providing data to smartphone experi-
ments. PhoneLab participants are balanced between genders and distributed across ages, and thus
representative of the broader smartphone user population. PhoneLab smartphones run a modified
version of the Android Open Source Platform (AOSP) 4.4.4 “KitKat” including instrumentation
and logging developed in collaboration with the mobile systems community. Participating smart-
phones log experimental results which are uploaded to a central server when the device is charging.

We instrumented the PhoneLab AOSP platform image to log SQLite activity by modifying the
SQLite source code and distributing the updated binary library as an over-the-air (OTA) platform
update to PhoneLab participants. Our logging recorded each SQL statement that was executed,
along with its resulting runtime and the number of rows returned as appropriate. All current
PhoneLab instrumentation including our SQLite logging statements are documented at https://
phone-lab.org/experiment/data/. To protect participant privacy, our instrumentation removes
as much personally-identifying information as possible, as well as recording prepared statement
arguments only as hash values.

Our trace data-set is drawn from publicly-available data provided by 11 PhoneLab developers
who willingly released1 complete trace data for their phones for March 2015. Of the eleven partic-
ipants, seven had phones that were participating in the SQLite experiment every day for the full
month, with the remaining phones active for 1, 3, 14, and 19 days. A total of 254 phone/days of
data were collected including 45,399,550 SQL statements. Of these, we were unable to interpret
308,752 statements (∼0.5%) due to a combination of data corruption and the use of unusual SQL
syntax. Results presented in this paper that include SQL interpretation are based on the 45,090,798
queries that were successfully parsed.

1 https://phone-lab.org/static/experiment/sample_dataset.tgz
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3 Query Complexity

In this section we discuss the query complexity we observed during our study and illustrate typical
workloads over pocket data. Figure 1 summarizes all 45 million statements executed by SQLite over
the 1 month period. As might be expected, SELECT forms almost three quarters of the workload
by volume. UPSERT statements (i.e., INSERT OR REPLACE) form a similarly substantial 16% of the
workload — more than simple INSERT and UPDATE statements combined. Also of note is a sur-
prising level of complexity in DELETE statements, many of which rely on nested sub-queries when
determining which records to delete.

Operation SELECT INSERT UPSERT UPDATE DELETE Total

Count 33,470,310 1,953,279 7,376,648 1,041,967 1,248,594 45,090,798

Runtime (ms) 1.13 2.31 0.93 6.59 3.78

Features Used

OUTER JOIN 391,052 236 391,288

DISTINCT 1,888,013 25 5,586 1,893,624

LIMIT 1,165,096 422 1,165,518

ORDER BY 3,168,915 194 3,169,109

Aggregate 638,137 25 3,190 641,352

GROUP BY 438,919 25 438,944

UNION 13,801 65 13,866

Fig. 1: Types and numbers of SQL statements executed during the trace, and query
features used in each.

Client App Statements Executed

Google Play services 14,813,949
Media Storage 13,592,982

Gmail 2,259,907
Google+ 2,040,793
Facebook 1,272,779
Hangouts 974,349
Messenger 676,993

Calendar Storage 530,535
User Dictionary 252,650
Android System 237,154

(a)

Client App Statements Executed

Weather 12
Speedtest 11

KakaoStory 8
MX Player Pro 4

Quickoffice 4
VLC 4

Barcode Scanner 2
Office Mobile 2

PlayerPro 2
KBS kong 2

(b)

Fig. 2: Apps that executed the (a) 10 most and (b) 10 fewest SQL statements.

Figure 2 shows the 10 most frequent and 10 least frequent clients of SQLite over the one month
trace. The most active SQLite clients include internal Android services that broker access to data
shared between apps such as personal media, calendars, and address books; as well as pre-installed
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and popular social media apps. There is less of a pattern at the low end, although several infrequent
SQLite clients are themselves apps that may be used only infrequently, especially on a phone-sized
device. We suspect that the distribution of apps would differ significantly for a tablet-sized device.

3.1 Database Reads
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Fig. 3: SELECT queries by (a) number of tables accessed and (b) maximum nesting depth.

Of the 45 million queries analyzed, 33.47 million were read-only SELECT queries. Figure 3 shows
the distribution of SELECT queries by number of tables accessed by the query, as well as the maximum
level of query nesting. Nesting includes from-nesting (e.g., SELECT ... FROM (SELECT ...)), as
well as expression-nesting (e.g., SELECT ... WHERE EXISTS (SELECT ...)). Even at this coarse-
grained view of query complexity, the read-only portion of the embedded workload distinguishes
itself from existing TPC benchmarks.

Like TPC-C [6], the vast majority of the workload involves simple, small requests for data that
touch a small number of tables. 29.15 million, or about 87% of the SELECT queries were simple
select-project-join queries. Of those, 28.72 million or about 86% of all queries were simple single-
table scans or look-ups. In these queries, which form the bulk of SQLite’s read workload, the query
engine exists simply to provide an iterator over the relationally structured data it is being used
to store. Conversely, the workload also has a tail that consists of complex, TPC-H-like [8] queries.
Several hundred thousand queries involve at least 2 levels of nesting, and over a hundred thousand
queries access 5 or more tables. As an extreme example, our trace includes 10 similar SELECT queries
issued by the Google Play Games Service2, each of which accesses up to 8 distinct tables to combine
developer-provided game state, user preferences, device profile meta-data, and historical game-play
results from the user.

Simple SELECT Queries We next examine more closely a class of simple look-up queries, defined
as any SELECT query that consists exclusively of selections, projections, joins, limit, and order

2 https://developers.google.com/games/services/
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Join Width

Where Clauses 1 2 3 4 6 Total

0 1,085,154 1,085,154

1 26,932,632 9,105 26,941,737

2 1,806,843 279,811 5,970 2,092,624

3 384,406 80,183 29,101 1 493,691

4 115,107 70,891 10,696 939 197,633

5 28,347 15,061 1,162 17 11 44,598

6 212 524 591 471 3 1,801

7 349 22,574 333 1,048 8 24,312

8 35 18 6 59

9 541 2,564 4 3,109

10 159 159

11 545 545

Total 30,353,789 478,708 50,417 2,480 28 30,885,422

Fig. 4: Number of simple look-up queries subdivided by join width (number of tables)
and number of conjunctive terms in the WHERE clause.

by clauses, and which does not contain any nested sub-queries or unions. Figure 4 shows queries
of this class, broken down by the number of tables involved in the query (Join Width) and the
complexity of the where clause, as measured in number of conjunctive terms (Where Clauses). For
example, consider a query of the form: SELECT R.A FROM R, S WHERE R.B = S.B AND S.C = 10

This query would have a join width of 2 (R, S) and 2 conjunctive terms (R.B = S.B and S.C = 10).
For uniformity, NATURAL JOIN and JOIN ON (e.g., SELECT R.A from R JOIN S ON B) expressions
appearing in the FROM clause are rewritten into equivalent expressions in the WHERE clause.

The first column of this table indicates queries to a single relation. Just over 1 million queries
were full table scans (0 where clauses), and just under 27 million queries involved only a single
conjunctive term. This latter class constitutes the bulk of the simple query workload, at just over
87% of the simple look-up queries. Single-clause queries appear to be the norm. Recall that an
N-way equi-join requires N-1 conjunctive terms; Spikes occur in the number of queries with one
more term than strictly required to perform a join, suggesting a constraint on at least one relation.

Narrowing further, we examine simple look-up queries referencing only a single source table and
a single conjunctive term in the WHERE clause. Figure 5 summarizes the structure of the predicate
that appears in each of these queries. In this figure, constant terms (Const) are any primitive value
term (e.g., a quoted string, an integer, or a float), or any JDBC-style parameter (?). For simple
relational comparators, we group together inequalities (i.e., <, ≤, >, ≥ and 6=) under the symbol θ,
and explicitly list equalities. Other relational operators such as LIKE, BETWEEN, and IN are also seen
with some frequency. However, the majority (85% of all simple look-ups) are exact match look-ups.
Not surprisingly, this suggests that the most common use-case for SQLite is as a relational key-value
store. As we show shortly through a per-app analysis of the data (Section 3.1), 24 out of the 179
apps that we encountered posed no queries other than exact look-ups and full table scans.

Other SELECT Queries Figure 6 shows a similar breakdown for all 33.5 million SELECT queries
seen. As before, the table shows the form of all expressions that appear as one of the conjunctive
terms of a WHERE clause, alongside the number of queries where the expression appears at least
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Expression Type Expression Form Count

Exact Lookups Const = Expr 26,303,579
Membership Test Expr [NOT] IN (List) 331,788

Inequality on 1 constant Const θ Expr 93,816
Patterned String Lookup Expr [NOT] LIKE Pattern 72,289

Disjunction [NOT] Expr ∨ Expr 61,541
Other Inequality Expr θ Expr 38,714

Validity Test Expr IS [NOT] NULL 17,305
No-op Clause Const or (Const = Const) 6,710

Boolean Column Cast [NOT] Column 5,358
Other Equality Expr = Expr 1,471
Function Call Function(Expr) 43
Range Test Expr BETWEEN Const AND Const 18

Fig. 5: The WHERE clause structure for single-tabled simple lookup queries with a single
conjunctive term in the WHERE clause.

once. 31.0 million of these queries contain an exact lookup. 1.6 million queries contain at least one
multi-attribute equality expression such as an equi-join constraint, lining up nicely with the 1.7
million queries that reference at least two tables.

Expression Type Expression Form Count

Exact Lookups Const = Expr 30,974,814
Other Equality Expr = Expr 1,621,556

Membership Test Expr [NOT] IN (List or Query) 1,041,611
Inequality on 1 constant Const θ Expr 677,259

Disjunction [NOT] Expr ∨ Expr 631,404
Bitwise AND Expr & Expr 480,921

Other Inequality Expr θ Expr 442,164
Boolean Column Cast [NOT] Column 302,014

No-op Clause Const or (Const = Const) 229,247
Patterned String Lookup Expr [NOT] LIKE Pattern 156,309

Validity Test Expr IS [NOT] NULL 87,873
Functional If-Then-Else CASE WHEN ... 2,428

Range Test Expr BETWEEN Const AND Const 2,393
Function Call Function(Expr) 1,965

Subquery Membership [NOT] EXISTS (Query) 1,584

Fig. 6: WHERE clause expression structures, and the number of SELECT queries in
which the structure appears as a conjunctive clause.

App developers make frequent use of SQLite’s dynamic typing: Where clauses include bare
column references (e.g., WHERE A, implicitly equivalent to WHERE A <> 0) as well as bare bit-wise
AND expressions (e.g., A&0xc4). This latter predicate appearing in a half-million queries suggests
extensive use of bit-arrays packed into integers.
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Function Call Sites

GROUP CONCAT 583,474
SUM 321,387
MAX 314,970
COUNT 173,031
LENGTH 102,747
SUBSTR 88,462

Function Call Sites

CAST 38,208
UPPER 20,487
MIN 19,566

COALESCE 3,494
LOWER 3,110

PHONE NUMBERS EQUAL 2,017

Function Call Sites

STRFTIME 1,147
IFNULL 657

JULIANDAY 587
DATE 44
AVG 15

Fig. 7: Functions appearing in SELECT queries by number of times the function is used.

Functions Functions extend the basic SQL syntax, providing for both specialized local data trans-
formations, as well as computation of aggregate values. Figure 7 shows all functions appearing in
SELECT queries during our trace, organized by the number of times that each function is used. All
functions that we saw are either built-in SQLite functions, or in the case of PHONE NUMBERS EQUAL

are Android-specific extensions; No user-defined functions appeared in the trace.
Overall, the most common class of function was aggregate functions (e.g., SUM, MAX, COUNT),

followed by string operations (e.g., LENGTH and SUBSTR). The most commonly used function was
GROUP CONCAT, an aggregate operator that constructs a string by concatenating its input rows. This
is significant, as it means that the most commonly used aggregate operator is holistic — its output
size is linear in the number of input rows.
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Fig. 8: Breakdown of SELECT queries by app. (a) Cumulative distribution of applications
by the number of SELECT queries issued (note the logarithmic scale). (b) Cumulative
distribution of applications by the percent of the app’s SELECT queries that are full
table scans or exact look-ups.

Per-Application Analysis We next break the SELECT workload down by the calling application
(app). Due to limitations of the logging infrastructure, 4.32 million queries (just over 12.9% of the
workload) could not be associated with a specific application, and our app-specific analysis excludes
these queries. Additionally, system services in Android are often implemented as independent apps
and counted as such in the numbers presented.

Over the course of the one-month trace we observed 179 distinct apps, varying from built-in
Android applications such as Gmail or YouTube, to video players such as VLC, to games such as
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3 Kingdoms. Figure 8a shows the cumulative distribution of apps sorted by the number of queries
that the app performs. The results are extremely skewed, with the top 10% of apps each posing
more than 100 thousand queries over the one month trace. The most query-intensive system service,
Media Storage was responsible for 13.57 million queries or just shy of 40 queries per minute per
phone. The most query-intensive user-facing app was Google+, which performed 1.94 million queries
over the course of the month or 5 queries per minute. At the other end of the spectrum, the bottom
10% of apps posed as few as 30 queries over the entire month.

We noted above that a large proportion of SELECT queries were exact look-ups, suggesting that
many applications running on the device might be using SQLite as a simple key-value store. This
suggestion was confirmed in our app-level analysis. For example, approximately half of one specific
app’s query workload consisted of the following two queries:

INSERT OR REPLACE INTO properties(property_key,property_value) VALUES (?,?);

SELECT property_value FROM properties WHERE property_key=?;

In this query, ? is a prepared statement parameter that acts as a place holder for values that are
bound when the prepared statement is evaluated.

To broaden the scope of our analysis of key/value queries, we define a key-value look-up query
as a SELECT query over a single relation that either performs a full table scan, or performs an exact
look-up on a single attribute. Figure 8b shows the cumulative distribution of apps sorted by the
fraction of each app’s queries that are key-value lookup queries. For 24 apps (13.4%), we observed
only key-value queries during the entire, month-long trace.

3.2 Database Writes

Write statements, INSERT, INSERT OR REPLACE (here abbreviated as UPSERT), UPDATE, and DELETE,
together constitute 11.6 million statements or about 25% of the trace. As shown in Figure 1, the most
prevalent operation is the UPSERT. INSERT and UPSERT together account for 9.3 million operations,
of which 7.4 are UPSERTs. In many of these cases, the use of UPSERTS appears to be defensive
programming on the part of wrapper libraries that make use of SQLite (e.g., Object Relational
Mappers, or ORMs). UPSERTS are also the canonical form of update in key-value stores, further
supporting the argument that a large fragment of SQLite’s traffic is based on key-value access
patterns.

DELETE Statements The trace includes 1.25 million DELETE statements. This was by far the
most expensive class of statement, with an average DELETE taking just under 4 ms to complete. A
significant portion of this cost is attributable to the use of DELETE as a form of bulk erasure. As
shown in Figure 9, 323 thousand DELETEs have no exact match condition in their WHERE clause,
while 528 thousand do include a range predicate. DELETE predicates can become quite complex;
46,122 DELETEs (just under 3.7%) use nested SELECT queries, and touch as many as 7 separate
tables (in 616 cases). This suggests extensive use of DELETE as a form of garbage-collection or cache
invalidation, where the invalidation policy is expressed through SQL.

UPDATE Statements Slightly over 1 million statements executed by SQLite over the course of the
month were UPDATE statements. Figure 10 breaks down the predicates used to select rows to be

8



Expression Type Expression Form Count

Exact Lookups Const = Expr 926,042
Other Inequality Expr θ Expr 527,517
Membership Test Expr [NOT] IN (List or Query) 190,695

Disjunction [NOT] Expr ∨ Expr 48,534
Inequality on 1 constant Const θ Expr 31,128

Other Equality Expr = Expr 10,037
Subquery Membership [NOT] EXISTS (Query) 9,079
Boolean Column Cast [NOT] Column 6,490

Patterned String Lookup Expr [NOT] LIKE Pattern 6,109
Validity Test Expr IS [NOT] NULL 2,693

Functional If-Then-Else CASE WHEN ... 390
No-op Clause Const or (Const = Const) 249
Range Test Expr BETWEEN Const AND Const 18

Fig. 9: WHERE clause expression structures, and the number of DELETE statements in which
the structure appears.

updated. Virtually all UPDATE statements involved an exact look-up. Of the million updates, 28
thousand did not include an exact look-up.

193 of the UPDATE statements relied on a nested SELECT statement as part of their WHERE clause,
including 56 that involved 2 levels of nesting. Of the 193 UPDATEs with nested subqueries, 25 also
involved aggregation.

Although the WHERE clause of the updates included a variety of expressions, every single setter
in every UPDATE statement in the trace assigned a constant value; Not a single UPDATE expression
attempted to compute new values using SQL, suggesting a strong preference for computing updated
values in the application itself. This is not entirely unexpected, as the database lives in the address
space of the application. Consequently, it is feasible to first perform a SELECT to read values out of
the database and then perform an UPDATE to write out the changes, a tactic used by many ORMs. An
unfortunate consequence of this tactic is that ORMs cache database objects at the application layer
unnecessarily, suggesting that a stronger coupling between SQL and Java (e.g., through language
primitives like LINQ [2] or StatusQuo [4]) could be of significant benefit to Android developers.

Expression Type Expression Form Count

Exact Lookups Const = Expr 1,013,697
Disjunction [NOT] Expr ∨ Expr 84,937

Inequality on 1 constant Const θ Expr 18,146
Membership Test Expr [NOT] IN (List or Query) 14,146
Other Inequality Expr θ Expr 9,443

Boolean Column Cast [NOT] Column 1,640
Validity Test Expr IS [NOT] NULL 1,517

Other Equality Expr = Expr 221
Patterned String Lookup Expr [NOT] LIKE Pattern 59

Fig. 10: WHERE clause expression structures, and the number of UPDATE statements in
which the structure appears.
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Fig. 11: App-level write behavior. (a) Cumulative distribution of applications by number
of data manipulation statements performed (note the logarithmic scale). (b) Cumula-
tive distribution of applications by read/write ratio.

Per-Application Analysis Figure 11a illustrates app-level write workloads, sorting applications
by the number of INSERT, UPSERT, UPDATE, and DELETE operations that could be attributed to
each. The CDF is almost perfectly exponential, suggesting that the number of write statements
performed by any given app follows a long-tailed distribution, a feature to be considered in the
design of a pocket data benchmark.

Figure 11b breaks apps down by their read/write ratio. Surprisingly, 25 apps (14% of the apps
seen) did not perform a single write over the course of the entire trace. Manual examination of these
apps suggested two possible explanations. Several apps have reason to store state that is updated
only infrequently. For example, JuiceSSH or Key Chain appear to use SQLite as a credential store. A
second, far more interesting class of apps includes apps like Google Play Newsstand, Eventbrite, Wifi
Analyzer, and TuneIn Radio Pro, which all have components that query data stored in the cloud.
We suspect that the cloud data is being encapsulated into a pre-constructed SQLite database and
being pushed to, or downloaded by the client applications. This type of behavior might be compared
to a bulk ETL process or log shipment in a server-class database workload, except that here, the
database has already been constructed. Pre-caching through database encapsulation is a unique
feature of embedded databases, and one that is already being used in a substantial number of apps.

4 Runtime Characteristics

Next, we look at overall runtime characteristics of the query workload observed during our study.
We examine how often queries arrive, how long they run, and how many rows they return—all
important inputs into designing the TPC-Mobile embedded database benchmark.

General Characteristics Figure 12 shows query interarrival times, runtimes, and returned row
counts (for SELECT statements) for all users, applications, and non-informational query types
(SELECT, UPDATE, INSERT, DELETE) included in our dataset. Given that each mobile application
is really generating an isolated workload to its own embedded database, we measure query interar-
rival time only between queries issued by the same application.

10



100 101 102 103 104 105 106 107 108

Previous Query Arrival Time (µs)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

(a)

101 102 103 104 105 106 107

Query Runtime (µs)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F
(b)

100 101 102 103 104

Returned Row Count

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

C
D

F

(c)

Fig. 12: Summary Statistics for Android SQLite Queries. Distributions of (a) inter-query
arrival times, (b) query runtimes, and (c) rows returned per query.
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Fig. 13: By-Query-Type Statistics for Android SQLite Queries. Distribution of times
since the query (a) immediately preceding, and (b) immediately following the query
in question. (c) Distribution of runtimes for each query.

Examining the interarrival times shown in Figure 12a, it is interesting to observe that many
queries seem to arrive much more quickly than the minimum query runtime shown in Figure 12b.
Part of this may be due to apps that use multiple separate databases, which is not yet captured by
our analysis. However, our logging is also done above any locking performed by SQLite, and so this
may demonstrate that there are many cases where multiple application threads are issuing over-
lapping queries in parallel, even if the queries are eventually serialized before results are returned.
Figure 12a also shows that, in addition to a standard long-tailed distribution of query inter-arrival
times, about 20% of the workload is very periodic, arriving at a rate of 0.01 Hz.

The runtime CDF shown in Figure 12b shows while overall query runtimes show variation over
several orders of magnitude, a large fraction of queries are executed in between 100 and 1000 µs. Fur-
ther investigation into the small fraction of extremely slow queries may discover areas for database
or application improvement. Finally, the row count CDF shown in Figure 12c shows that 80% of
queries return only one row, further supporting our observation that many applications seem to be
using the SQLite database almost as a key-value store.
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Fig. 14: Per-App Summary Statistics for Android SQLite Queries. Distributions of (a)
inter-query arrival times, (b) query runtimes, and (c) rows returned per query.

Runtime Characteristics by Query Type Figure 13 shows runtime characteristics for each of
the four types of SQL statement. Figure 13a and 13b in particular show the time since the last
query to be issued and the time until the next query is issued (respectively), while Figure 13c shows
the distribution of runtimes for each type of query. Examining the differences between Figures 13a
and 13b, we observe that INSERT queries are far more likely to arrive shortly before another query
than shortly after. Almost 80% of INSERTs are followed by another query within 100µs. A similar,
but far more subdued pattern can be seen for UPDATE statements. Conversely, both SELECT and
DELETE statements are slightly more likely to arrive shortly before, rather than shortly after another
query. Figure 13c shows significant deviations from the global average runtime for DELETE and
UPDATE statements. UPDATE statements in particular have a bimodal distribution of runtimes, spiking
at 100µs and 10ms. We suspect that this performance distribution is related to SQLite’s use of
filesystem primitives for locking and write-ahead logging [10, 11]. This could also help to explain
the 0.01Hz query periodicity we observed above.

Runtime Characteristics by Application Figure 14 shows query interarrival times, runtimes,
and returned row counts for ten of the most active SQLite clients. As seen in Figure 14a, the
0.01Hz periodicity is not unique to any one application, further suggesting filesystem locking as a
culprit. Two of the most prolific SQLite clients, Google Play services and Media Storage appear
to be very bursty: 70% of all statements for these applications are issued within 0.1ms of the
previous statement. Also interesting is the curve for queries issued by the Android System itself.
The interarrival time CDF appears to be almost precisely logarithmic for rates above 10µs, but has
a notable lack of interarrival times in the 1ms to 10ms range. This could suggest caching effects, with
the cache expiring after 1ms. As seen in Figure 14b, most apps hold to the average runtime of 100µs,
with several notable exceptions. Over 50% of the Android System’s statements take on the order
of 1ms. Just under 20% of Hangouts statements take 10ms, suggesting an update-heavy workload.
Also, Contacts Storage has a heavier-duty workload, with 30% of statements taking between 100µs
and 1ms. Figure 14c shows that the Android System and Media Storage issue almost exclusively
single-row lookup queries. The remaining apps issue a large number of single-row queries — Even
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Contacts Storage has a workload consisting of 45% single-row reads — the number of rows returned
in general varies much more widely. Many of these apps’ user interfaces have both a list and a
search view that show multiple records at a time, suggesting that these views are backed directly
by SQLite. Although all apps have long tails, two apps in particular: Gmail and Google+ are notable
for regularly issuing queries that return on the order of 100 rows.

5 Pocket Data and Related Work

In spite of the prevalence of SQL on mobile devices, and an increasing interest in so-called “small
data” [9], relatively little attention has been paid to the rapidly growing pocket data space. In
this section, we first explore some existing research on mobile databases, with a focus on how the
authors evaluate their solutions. Then, we turn to existing benchmarking suites and identify specific
disconnects that prevent them from being applied directly to model pocket data. In the process, we
explore aspects of these benchmarks that could be drawn into a potential pocket data benchmark.

5.1 Pocket Data Management

Kang et. al. [11] explored the design of a flash-aware transactional layer called X-FTL, specifically
targeting limitations of SQLite’s redo logging on mobile devices. To evaluate their work, the authors
used the TPC-C benchmark in conjunction with a series of micro-benchmarks that evaluate the
file system’s response to database write operations. This workload is appropriate for their target
optimizations. However, as we discuss below, TPC-C is not sufficiently representative of a pocket
data workload to be used as a general-purpose mobile database benchmark.

Jeong et. al. [10] noted similar limitations in SQLite’s transactional layer, and went about
streamlining the IO-stack, also primarily for the benefit of mobile devices. Again, micro-benchmarks
played a significant role in the author’s evaluation of their work. To evaluate their system’s behav-
ior under real-world conditions, the authors ran the Twitter and Facebook apps, simulating user
behavior using a mobility trace generated by MobiGen [1]. This is perhaps the most representative
benchmarking workload that we encountered in our survey of related work.

Many of the same issues with IO and power management that now appear in mobile phones
have also historically arisen in sensor networks. Madden et. al.’s work on embedded databases with
TinyDB [15] is emblematic of this space, where database solutions are driven by one or more specific
target application domains. Naturally, evaluation benchmarks and metrics in sensor networks are
typically derived from, and closely tied to the target domain.

5.2 Comparison to Existing Benchmarks

Given the plethora of available benchmarking software, it is reasonable to ask what a new benchmark
for pocket-scale data management brings to the table. We next compare the assumptions and
workload characteristics behind a variety of popular benchmarking suites against a potential TPC-
MOBILE, and identify concerns that this benchmark would need to address in order to accurately
capture the workload characteristics that we have observed.
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Existing Mobile Benchmarks and Data Generators Although no explicit macro-benchmarks
exist for mobile embedded databases, we note two benchmark data generators that do simulate
several properties of interest: AndroBench [12] and MobiGen [1]. AndroBench is a micro-benchmark
capable of simulating the IO behavior of SQLite under different workloads. It is primarily designed
to evaluate the file-system supporting SQLite, rather than the embedded database itself. However,
the structure of its micro-benchmark workloads can just as effectively be used to compare two
embedded database implementations.

The second benchmark, MobiGen has little to do with data management directly. Rather, it
generates realistic traces of environmental inputs, simulating the effects of a phone being carried
through a physical space. Replaying these traces through a virtual machine running a realistic
application workload could generate realistic conditions (e.g., as in the evaluation of X-FTL [10]).
However, it can not simulate the effects of user interactions with apps running on the device.

TPC-C One macro-benchmark suite that bears a close resemblance to the trace workload is TPC-
C [6], which simulates a supply-chain management system. It includes a variety of transactional
tasks ranging from low-latency user interactions for placing and querying orders, to longer-running
batch processes that simulate order fulfillment. A key feature of this benchmark workload is the
level of concurrency expected and required of the system. Much of the data is neatly partitioned,
but the workload is designed to force a non-trivial level of cross-talk between partitions, making
concurrency a bottleneck at higher throughputs. Conversely, mobile SQLite databases are isolated
into specialized app-specific silos. In our experiments, throughput remained at very manageable
levels from a concurrency standpoint. The most intensive database user, Google Play services had
14.8 million statements attributable to it, just under half of which were writes. This equates to about
one write every 3 seconds, which is substantial from a power management and latency perspective,
but not from the standpoint of concurrency.

YCSB We observed many applications using SQLite as a simple key/value store. Indeed, 13% of the
applications we observed had a read workload that consisted exclusively of key/value queries, and
over half of the applications we observed had a workload that consisted of at least 80% key/value
queries. The Yahoo Cloud Services benchmark [5] is designed to capture a variety of key/value
query workloads, and could provide a foundation for a pocket-scale data benchmark in this capacity.
However, it would need to be extended with support for more complex queries over the same data.

Analytics These more complex queries include multiple levels of query nesting, wide joins, and
extensive use of aggregation. As such, they more closely resemble analytics workload benchmarks
such as TPC-H [8], The Star-Schema Benchmark [17], and TPC-DS [7]. This resemblance is more
than passing; many of the more complex queries we encountered appeared to be preparing ap-
plication runtime state for presentation to the user. For example the Google Play Games service
tracks so-called events and quests, and participating apps. One of the most complex queries that
we encountered appeared to be linking and summarizing these features together for presentation in
a list view. We note that the presence of analytics queries in pocket data management is likely to
increase further, as interest grows in smartphones as a platform for personal sensing [3, 13, 14].

TPC-E The TPC-E benchmark emulates a brokerage firm, and includes a mix of reporting and
data mining queries alongside stream-monitoring queries. It models decision support systems that
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involve a high level of CPU and IO load, and that examine large volumes of rapidly changing data.
SQLite does not presently target or support streaming or active database applications, although
such functionality may become available as personal sensing becomes more prevalent.

6 Why TPC-MOBILE?

Our primary observation was that a pocket data workload includes a mix of both OLTP and
OLAP characteristics. The majority of operations performed by SQLite were simple key-value
manipulations and look-ups. However, a substantial fraction of the (comparatively read-heavy)
workload consisted of far more complex OLAP-style operations involving wide, multi-table joins,
nested sub-queries, complex selection predicates, and aggregation.

Many of these workload characteristics appeared to be motivated by factors unique to em-
bedded databases. For example, SQLite uses single-file databases that have a standard, platform-
independent format. As a consequence, we saw indications of entire databases, indexes and all, being
transported in their entirety through web downloads or as attachments to other files [9]. This is
suggestive of a pattern where cloud services package fragments of their state into SQLite databases,
which are then downloaded and cached by the app for both lower-latency and offline access.

Query optimization goals also differ substantially for pocket data workloads. For example, la-
tency is a primary concern, but at vastly different scales. Over our one-month trial, the average
SQL statement took 2 ms to evaluate, and even complex SELECT queries with 4-level deep nesting
only took an average of 120 ms.

Finally, unlike typical server-class benchmark workloads, where throughput is a key factor,
embedded databases have smaller workloads — on the order of hundreds of rows at most. Moreover,
embedded databases need to share computing resources fairly with other processes on the same
device. This means that in stark contrast to server-class workloads, an embedded database is idle
more frequently. Periods of low-utilization are opportunities for background optimization, but must
be managed against the needs of other applications running on the device, as well as the device’s
limited power budget.

Pocket data workloads represent a growing, and extremely important class of database con-
sumers. Unfortunately, research and development on embedded databases (e.g., [10, 11]) is presently
obligated to rely on micro-benchmarks or anecdotal observations about the needs and requirements
of embedded database engines. We believe that a new TPC-MOBILE benchmark that captures
the characteristics observed in this paper can provide a principled, standardized way to evaluate
advances in mobile database technology, which will in turn, help to drive the development of such
advances.

7 Conclusions

In this paper, we identified embedded databases on smartphones as the foundation of a new class
of pocket data workloads. We have presented the preliminary results for a long-running study of
SQLite embedded database usage on Android smartphones, and identified numerous ways in which
pocket data workloads differ from big data workloads. Through this study, we hope to be able to
create a benchmark that will spur further research and development on pocket data and embedded
databases.
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