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Abstract

Functional (aka immutable) data structures are used exten-
sively in data management systems. From distributed sys-
tems to data persistence, immutability makes complex pro-
grams significantly easier to reason about and implement.
However, immutability also makes many runtime optimiza-
tions like tree rebalancing, or adaptive organizations, un-
reasonably expensive. In this paper, we propose Fluid data
structures, an approach to data structure design that allows
limited physical changes that preserve logical equivalence.
As we will show, this approach retains many of the desirable
properties of functional data structures, while also allowing
runtime adaptation. To illustrate Fluid data structures, we
work through the design of a lazy-loading map that we call
a Fluid cog. A Fluid cog is a lock-free data structure that
incrementally organizes itself in the background by applying
equivalence-preserving structural transformations. Our ex-
perimental analysis shows that the resulting map structure
is flexible enough to adapt to a variety of performance goals,
while remaining competitive with existing structures like
the C++ standard template library map.
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1 Introduction

Functional (immutable) data structures [15] have several
very nice properties that make them easy to use and reason
about. Because their content does not change, compared to
mutable data structures, there are fewer cache consistency
issues to deal with, components are re-usable across struc-
ture instances, and compiler optimizations are easier to rea-
son about. Unfortunately, functional data structures are also
harder to employ in practice than mutable structures. Func-
tional data structures are often carefully hand-tuned to avoid
unnecessary data copies. Among other things, this encour-
ages data structure designers to front-load organizational
costs into write operations, since even minor organizational
modifications can require rewriting significant portions of
the data structure.

In lazy data structures, blocks of code can be used as place-
holders for incomplete fragments of the structure. When a
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Figure 1. Immutable data structures block during updates.
Fluid data structures allow for continuous, incremental per-
formance improvements after updates.

lazy data structure is traversed, any placeholder code en-
countered must be evaluated, or materialized, before the
traversal can continue. The data structure is otherwise im-
mutable. Lazy evaluation allows organizational costs to be
time-shifted forward, away from writes, but also retain most
of the benefits of classical immutable data structures.

In this paper, we argue that lazy data structures do not go
far enough — specifically in the context of database indexing.
First, an un-materialized node is completely useless: the data
contained within is inaccessible until the corresponding code
finishes executing. Second, the choice of how to materialize
is selected when the node is created, and can not be adapted
to changing workload parameters. Finally, once materialized,
a node is completely immutable, making runtime adaptation
in response to changing workloads (e.g., re-balancing or
adaptive indexing) extremely expensive.
We propose a new family of data structures called fluid

data structures that permit a limited form of mutation where
the logical consistency of the structure is preserved. In an im-
mutable data structure, a pointer is guaranteed to reference
exactly the same byte string forever. Fluid data structures
also allow an additional class of object reference called a
handle, which only guarantees the logical stability of the ref-
erenced object; The handle may be updated at any time, as
long as the newly referenced object is logically equivalent to
the original. As illustrated in Figure 1, this flexibility allows
for small and continuous performance improvements, along
with adaptation to changing workloads, and no blocking of
accessor threads.

We introduce a concrete fluid data structure, called Fluid
cog. Fluid cog is based on our past work on Just-in-Time
Index Adaptation [12]. Just-in-Time indexes allow graceful
transitions between different physical data layouts through
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small, incremental units of work. At each step along the tran-
sition, the index is in an intermediate, but still completely us-
able state. For example, an index transitioning from a linked
list to a binary tree may be in a state that combines elements
of both data structures, since reorganization is done in in-
crements. Client threads are not blocked from reading data
out, regardless of state.
To realize Fluid cog, we propose a mechanism for rea-

soning about fluid data structures by modeling them with a
grammar. We specifically model Just-in-Time indexes with
a Composable Organizational Grammar (cog), along with
an algebra of transformation rules over sentences in cog.
We then show that these transforms can be applied locally
to alter components of the data structure without affecting
the correctness or consistency of the structure as a whole.
Finally, we implement cog in two forms, first in a Func-
tional representation, and then as a more efficient Fluid cog
Data Structure that is an immutable, thread-safe form of a
Just-in-Time index.
The remainder of the paper is organized as follows: In

Section 2 we define fluid data structures formally, including
an abstract framework for reasoning about their correctness.
Section 3 formally defines the composable organizational
grammar (cog). In Section 4 we define transforms, syntactic
rewrite rules over cog. Section 5 maps cog to both functional
and fluid data structure implementations. Next, in Section 6
we address the practical challenges of implementing cog
as a fluid data structure. Finally, Section 7 evaluates our
cog-based fluid data structure against several comparable
commodity data structures.

2 Fluid Data Structures

Before formalizing fluid data structures, we first introduce
a key enabling concept: handles. References in a functional
data structure preserve physical equivalence. All references
to an element are guaranteed to point to exactly the same
sequence of bytes forever. A fluid data structure, by com-
parison, distinguishes between two types of references that
we call pointers and handles, respectively. Pointers behave
like references in a normal functional data structure, pre-
serving physical equivalence. Conversely, handles preserve
only a form of logical equivalence. The element referenced
by a handle may change, but the replacement must preserve
some meaningful properties of the data structure as a whole.
Thus, handles can be used in longer-lived components of the
program (e.g., the data structure itself), while still allowing
limited mutability for organization in the background. When
physical stability is required (e.g., while the data structure is
being accessed), the program can first dereference the handle
into a (short-lived) pointer.

As illustrated in Figure 2, handles provide a layer of indi-
rection that allows individual nodes of a data structure to be
replaced with minimal impact. A fluid data structure uses
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Figure 2. Classical immutable data structures (a) vs with
handles (b).

handles to allow such replacements under the condition that
the replacements not affect the correctness of the structure.
As a result, handle updates do not need to trigger expen-
sive cache invalidations, as any attempt to concurrently de-
reference the handle can safely use the older version. In other
words, updates to handles are not subject to any ordering
constraints, and only require a single atomic integer write.

Definition 1 (Fluid Data Structure). A fluid data structure

of type F is defined by a 2-tuple : ⟨ τ , ▷ ⟩ where τ denotes the

type of elements referenced by handles in the structure, and

▷: τ × τ → B is an intransitive relation over τ . Instances of a
fluid data structure are denoted f ∈ F . We write REFS(f ) to
denote the set of elements (of type τ ) referenced by handles in

the instance f .

Informally, the relation ▷ defines valid replacements for
elements referenced by a handle. That is, if e ∈ REFS(f ) and
there exists an e ′ such that e ▷ e ′, then e may be replaced by
e ′. We denote such a replacement (of e with e ′) by f [e\e ′].
Next, we consider whether a replacement is also “safe.”

Definition 2 (Validator). A validator for F is the 2-tuple

V := ⟨ correct,≡ ⟩ of an indicator function correct : F →

B and an equivalence relation ≡: F × F → B.

A validator captures logical equivalence in a fluid data
structure (≡), as well as any static correctness properties that
the structure must enforce (correct). A fluid data structure
is correct if handle replacements preserve both equivalence
and correctness.

Definition 3 (V-Correctness). Let F be a fluid data struc-

ture defined by ⟨ τ , ▷ ⟩ and let V = ⟨ correct,≡ ⟩ be a

validator for F . We say that F isV-correct iff

∀f ∈ F , e ∈ REFS(f ), e ′ ∈ τ :
(e ▷ e ′) ∧ correct(f ) =⇒ f ≡ f [e\e ′]

∧ correct(f [e\e ′])

Intuitively, a correct fluid data structure is one where the
structure’s local consistency properties (i.e., ▷) guarantee
logical consistency over the entire structure as handles are
updated. In the balance of the paper, we will illustrate one
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technique ideally suited for such reasoning: modeling data
structure instances by a grammar.

3 Data Structures As A Grammar

We adapt our prior work on just-in-time data structure com-
pilation [12] into a compositional organizational grammar
(cog). cogmodels in-memory map-style data structures (also
called dictionaries or key-value stores). Each sentence in
cog corresponds to an instance of a map-like data structure.
After defining cog itself, we will define a set of correctness-
preserving transformation rules over cog in Section 4. Then
in Section 5, we prove that cog and its transformation rules
define a fluid data structure.

3.1 Notation and Definitions

Let r ∈ R denote a record identified by a (potentially non-
unique) identifier id (r ) ∈ I. We assume a total order ⪯ is
defined over elements of I. We abuse syntax and use records
and keys interchangeably with respect to the order, writing
r ⪯ k to mean id (r ) ⪯ k . We write [τ ], {τ }, and {| τ |} to
denote the type of arrays, sets, and bags (respectively) with
elements of type τ . Wewrite [r1, . . . , rN ] (resp., {. . .}, {| . . . |})
to denote an array (or set or bag) with elements r1, . . . , rN .
The terms of cog are defined by four symbols Array,

Sorted, Concat, BinTree. A cog instance is a sentence in
cog, defined by the grammar C as follows:

C = Array([R]) | Sorted([R])

| Concat(C,C) | BinTree(I,C,C)

Terms in cog map directly to the physical building blocks
of a data structure, while full sentences correspond to in-
stances of a data structure or one of its sub-structures. For
example an instance ofArray represents an array of records
laid out contiguously in memory, while Concat represents
a pair of pointers referencing two other instances. We write
typeof(C) to denote the atom symbol at the root of an in-
stance C ∈ C.

Example 1 (Linked List). A linked list may be defined as a

syntactic restriction over cog as follows

LL = Concat(Array([R]),LL) | Array([R])

A linked list is either a concatenation of an array, and a pointer

to the next element, or a terminal array
1
. An example linked

list in this grammar is illustrated in Figure 3a.

Example 2 (Binary Trees). A binary tree may be defined as

a syntactic restriction over cog as follows

B = BinTree(I,B,B) | Array([R])

A binary tree is a hierarchy of BinTree inner nodes, with

Array leaf nodes. An example of a classical binary tree in this

1Our examples are slightly overgeneralized for simplicity. While a textbook
linked list has only one record per node, the example permits more.

⊎ Concat BinTreeArray Sorted

⊎ ⊎ ⊎ ⊎ ⊎⊎ ⊎ ⊎ ⊎

5 6 1 0 4 7 9 8 2

4

(a) Linked List

6

0 1

2 8

1 95 7

3 5 6 7 8 9

(b) Binary Tree

6

2 8

0,1 3,5 6,7 8,9

(c) Binary Tree / Array Hybrid

Figure 3. Example abstract syntax trees for three logically
equivalent, correct sentences in cog.

restricted grammar is illustrated in Figure 3b, while Figure 3c

shows a binary tree with multiple records per leaf.

Two different instances, corresponding to different repre-
sentations may still encode the same data. We describe the
logical contents of an instance C as a bag, denoted by D (C),
and use this term to define logical equivalence between two
instances.

D (C) =


{| r1, . . . , rN |} if C = Array([r1, . . . , rN ])

{| r1, . . . , rN |} if C = Sorted([r1, . . . , rN ])

D (C1) ⊎ D (C2) if C = Concat(C1,C2)

D (C1) ⊎ D (C2) if C = BinTree( _ ,C1,C2)

Definition 4 (Logical Equivalence). Two instances C1 and

C2 are logically equivalent if and only if D (C1) = D (C2). To

denote logical equivalence we write C1 ≈ C2.

Example 3. The two sentences illustrated in Figure 3b and

Figure 3c have the same logical contents and so are logically
equivalent. By comparison, Figure 3a and Figure 3b are not

logically equivalent; the former has extra copies of record 4.

3.2 cog Semantics

Array andConcat represent the physical layout of elements
of a data structure. The remaining two atoms provide se-
mantic constraints (using the identifier order ⪯) over the
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UnSort(C) =

{
Array( ®r ) if C = Sorted( ®r )

C otherwise

Sort(C) =

{
Sorted(sort( ®r )) if C = Array( ®r )

C otherwise

Divide(C) =

{
Concat(Array(

[
r1 . . . r⌊ N2 ⌋

]
),Array(

[
r⌊ N2 ⌋+1

. . . rN
]
)) if C = Array([r1 . . . rN ])

C otherwise

Crack(C) =

{
BinTree(id

(
r⌊ N2 ⌋

)
,Array(

[
ri

�� ri ≺ r⌊ N2 ⌋

]
),Array(

[
ri

�� r⌊ N2 ⌋ ⪯ ri
]
) if C = Array([r1 . . . rN ]))

C otherwise

Merge(C) =


Array([r1 . . . rN , rN+1 . . . rM ]) if C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Array([r1 . . . rN , rN+1 . . . rM ]) if C = BinTree( _ ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

C otherwise

PivotLeft(C) =


Concat(Concat(C1,C2),C3) if C = Concat(C1,Concat(C2,C3))

BinTree(k2,BinTree(k1,C1,C2),C3) if C = k1 ≺ k2 and BinTree(k1,C1,BinTree(k2,C2,C3))

C otherwise

Figure 4. Examples of correct transforms. Sort and UnSort convert between Array and Sorted and visa versa. Crack and
Divide both fragment Arrays, and both are reverted by Merge. Crack in particular uses an arbitrary array element to
partition its input value (the N

2 th element in this example), analogous to the RadixCrack operation of [10]. PivotLeft rotates
tree structures counterclockwise and a symmetric PivotRight may also be defined. The function sort : [R] → [R] returns a
transposition of its input sorted according to ⪯.

physical layout that can be exploited to make the structure
more efficient to query.We say that instances satisfying these
constraints are structurally correct.
Definition 5 (Structural Correctness). We define the struc-

tural correctness of an instance C ∈ C (denoted by the unary

relation StrCor (C)) for each atom individually:

Case 1. A term Array is always structurally correct.

Case 2. A term Concat(C1,C2) is structurally correct if and

only if C1 and C2 are both structurally correct.

Case 3. A term Sorted([r1, . . . , rN ]) is structurally correct if

and only if ∀0 ≤ i < j ≤ N : ri ⪯ r j
Case 4. A term BinTree(k,C1,C2) is structurally correct if

and only if both C1 and C2 are structurally correct,

and ∀r1 ∈ D (C1) : r1 ≺ k and r2 ∈ D (C2) : k ⪯ r2.

In short, Sorted is structurally correct if its records are
in sorted order. Similarly, BinTree is structurally correct
if it corresponds to a binary tree node, with its children
partitioned by its identifier. Both Concat and BinTree ad-
ditionally require that their children be structurally correct.

4 Transforms over cog

We next formalize state transitions in a fluid cog through
pattern-matching rewrite rules over cog called transforms.
Definition 6 (Transform). We define a transform T as any

(endo)morphism T : C→ C mapping between terms of cog.

We denote by T the set of all transforms T ∈ T .

Figure 4 illustrates a range of transforms that correspond
to common operations on index structures. For consistency,

we define transforms over all instances and not just instances
where the operation “makes sense.” On other instances, trans-
forms behave as the identity (id(C) = C).

Clearly not all possible transforms are useful for organiz-
ing data. For example, the well defined, but rather unhelpful
transform Empty(C) = Array([]) transforms any cog in-
stance into an empty array. To capture this notion of a “useful”
transform, we define two correctness properties: structure
preservation and equivalence preservation.

Definition 7 (Equivalence Preserving Transforms). A trans-

form T is defined to be equivalence preserving if and only if

∀C : C ≈ T (C) (Definition 4).

Definition 8 (Structure Preserving Transforms). A trans-

form T is defined to be structure preserving if and only if

∀C : StrCor (C) =⇒ StrCor (T (C)) (Definition 5).

A transform is equivalence preserving if it preserves the
logical content of the instance. It is structure preserving if
it preserves the structure’s semantic constraints (e.g., the
record ordering constraint on instances of the Sorted atom).
If it is both, we say that the transform is correct.

Definition 9 (Correct Transform). We define a transform T
to be correct (denoted Correct (T )) if T is both structure and

equivalence preserving.

In Appendix A.1 we give proofs of correctness for each of
the transforms in Figure 4.

Example 4. Figures 5a, 5b, and 5c illustrate the Sort, Crack,
and PivotLeft transforms respectively. Sort and Crack both
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(a) Sort Transform
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(d) LHSMeta Transform applied to Crack

Figure 5. Example of transformations over cog

operate on leaves. As a result, the input term is entirely re-

placed with a new, logically equivalent term. Observe that

since PivotLeft operates on an inner node of the grammar,

several subterms appear unchanged in the resulting tree.

4.1 Meta Transforms

Transforms such as those illustrated in Figure 4 form the
atomic building blocks of a policy for re-organizing data
structures. For the purposes of this paper, we refer to these
six transforms, together with PivotRight and the identity
transform id, collectively as the atomic transforms, denoted
A. We next introduce a framework for constructing more
complex transforms from these building blocks.

Definition 10 (Composition). For any two transformsT1,T2 ∈
T , we denote by T1 ◦T2 the composition of T1 and T2:

(T1 ◦T2)(C)
def
= T2(T1(C))

Transform composition allows us to build more complex
transforms from the set of atomic transforms. We also con-
sider meta transforms that manipulate transform behavior.

Definition 11 (Meta Transform). A meta transform M is

any correctness-preserving functorM : T → T . That isM is

a meta transform if and only if ∀T ∈ T : Correct (T ) =⇒
Correct (M[T ]) (Definition 9).

We are specifically interested in two meta transforms that
will allow us to apply transforms not just to the root of an
instance, but to any of its descendants as well.

LHS[T ](C) =


Concat(T (C1),C2) if C = Concat(C1,C2)

BinTree(k,T (C1),C2) if C = BinTree(k,C1,C2)

C otherwise

RHS[T ](C) =


Concat(C1,T (C2)) if C = Concat(C1,C2)

BinTree(k,C1,T (C2)) if C = BinTree(k,C1,C2)

C otherwise

Theorem 1 (LHS and RHS are meta transforms). LHS and
RHS are correctness-preserving functors over T .

The proof, given in Appendix A.2, is a simple structural
recursion over cases. We refer to the closure of LHS and
RHS over the atomic transforms as the set of hierarchical
transforms, denoted ∆.

∆ = A ∪ { LHS[T ] | T ∈ ∆ } ∪ { RHS[T ] | T ∈ ∆ }

Corrolary 1. Any hierarchical transform is correct.

Example 5. Continuing Example 4, Figure 5d illustrates a

meta-transform: LHS[Crack]. The meta transform navigates

to the left-hand-side of the root Concat term and simulates

applying its parameter (Crack) there.

5 cog-Based Data Structures

We next outline how to realize data structures based on cog.
We start by defining a purely functional implementation of
this data structure, and then illustrate how the resulting data
structure can be re-implemented as a fluid data structure.

5.1 Functional cog

To implement cog as a functional data structure, we map
the grammar directly to a union type. Each term expansion
of the grammar maps to one node of the structure, as in the
following ML-like data type definition:
type Node = Array of Record list

| Sorted of Record list

| Concat of Node * Node

| BinTree of Key * Node * Node

Similarly, transforms over cog map directly to equivalent
functions with signature Node -> Node. For example, the
Sort and PivotLeft transforms are illustrated in Algorithm 1
and Algorithm 2 respectively.

Algorithm 1 Sort( n: Node ) -> Node

match n with

| Array(data) -> Sorted( sort_list(data) )

| c -> c
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Algorithm 2 PivotLeft( n: Node ) -> Node

match n with

| Concat(A, Concat(B, C)) ->

Concat(Concat(A, B), C)

| BinTree(X, A, BinTree(Y, B, C)) ->

BinTree(Y, BinTree(X, A, B), C)

| c -> c

Meta-Transforms are implemented similarly as functions
with signature (Node->Node)->Node->Node. The transform re-
builds the data structure from the ground up, for example as
with LHS in Algorithm 3. Observe that each valid applica-
tion of LHS (or RHS) performs one node allocation. Thus,
any primitive transform requires a number of allocations
linear in the depth at which it is applied.

Algorithm 3 LHS( t: (Node->Node) )( n: Node ) -> Node

match n with

| Concat(A, B) -> Concat( t(A), B )

| BinTree(X, A, B) -> BinTree( X, t(A), B )

| c -> c

Example 6. Consider the following sentence in cog:

Concat( Concat( Array([2, 0, 1]),Array([5, 2, 3]) ),
Concat( Array([3, 5, 4]),Array([7, 8, 6]) ) )

This sentence defines a data structure with of seven Node ele-

ments. Applying the transform RHS[LHS[Sort]] replaces the
Node corresponding to Array([3, 5, 4]) with a new Node corre-

sponding to Sorted([3, 5, 4]). Figure 6a illustrates this trans-

form applied to a functional cog data structure. While four of

the seven nodes can be re-used in the transformed structure,

new Node instances must be allocated for the new node and all

of its ancestors (red-dashed box).

5.2 Fluid cog

Fluid data structures allow limited runtime modification of
subtrees in the data structure. To implement cog as a fluid
data structure, we track all Node instances in the structure
as references.

type Node =

| Array of Record list

| Sorted of Record list

| Concat of Node ref * Node ref

| BinTree of Key * Node ref * Node ref

Changes to the primitive transforms are largely cosmetic.
References can be updated directly, so the function’s sig-
nature changes to Node->Unit. Likewise, constructors are
updated to use references as needed. The key difference

Algorithm 4 FluidLHS( t: (Node->Unit) )( n: Node )

match n with

| Concat(A, B) -> t(!A)

| BinTree(X, A, B) -> t(!A)

| c -> c

appears in the Meta transforms, as in LHS as implemented
in Algorithm 4.

The fluid version of LHS simply recurs, without needing
to allocate a replacement node. However, as long as t is cor-
rect, the operation’s side effects do not need to immediately
become visible to other threads. We formalize this principle
in the following theorem.

Theorem 2 (Fluid cog is a Fluid Data Structure). Define the

preference relation ▷A as follows

(C1 ▷A C2)
def
= ∃T ∈ A : T (C1) = C2

Define the validator VA by Structural Correctness (Defini-

tion 5) and Logical Equivalence (Definition 4) of cog.

VA := ⟨ StrCor (·) ,≈ ⟩

The fluid data structure defined by ⟨ Node,▷A ⟩ isVA-Correct.

Proof. Every handle in a fluid cog instance can be reached by
tree traversal. Furthermore, by definition, the valid replace-
ments for the handle C are any T (C) where T ∈ A. Thus,
every handle replacement corresponds to a transform in ∆.
By Corrolary 1 (Section 4.1), all transforms in ∆ preserve
both structural correctness and logical equivalence. □

Example 7. Continuing Example 6, Figure 6b illustrates the

same transform applied to a Fluid cog for the same sentence.

Meta transforms serve solely to navigate to a specific node of

the tree and do not trigger new allocations. Only the actual

leaf transformation needs to allocate new Nodes.

6 Fluid cog in Practice

We implemented a prototype of Fluid cog as a concurrent
data structure in C++2. In addition to client threads accessing
the data structure, a background thread acts as a just-in-time

optimizer, incrementally improving the layout as time and
resources permit.

6.1 Access Paths

A Fluid cog provides lock-free access to its contents through
access paths that recursively traverse the index: (1) Get(key)
returns the first recordwith a target key, (2) Iterator(lower)
returns an ordered iterator over records with keys greater
than or equal to lower. As an example, Algorithm 5 imple-
ments the first of these access paths by recursively descend-
ing through the index. Semantic constraints on the layout
2https://github.com/UBOdin/jitd-cpp

https://github.com/UBOdin/jitd-cpp
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(a) Functional cog
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(b) Fluid cog

Figure 6. Applying the transform RHS[LHS[Sort]] to in-
stances of both Functional cog and Fluid cog.

provided by Sorted and BinTree are exploited where they
are available.

Algorithm 5 Get( C : Node, k : Key ) -> Record option

match C with

| Array(data) -> linearScan(data , k)

| Sorted(data) -> binarySearch(data , k)

| Concat(A, B) -> (

match Get(!A) with

| Some(result) -> result

| None -> Get(!B) )

| BinTree(k', A, B) ->

if k < k' then Get(!A) else Get(!B)

The iterator similarly exploits semantic constraints where
available. Nodes are lazily dereferenced from Handles into
Pointers as they are visited. The iterator supports concurrent
updates to the structure, since the structure’s logical content
is immutable and updates create new versions.

6.2 Updates

Organizational effort in a Fluid cog is entirely offloaded to
the just-in-time optimizer. Client threads performing updates
do the minimum work possible to register their changes. To
insert, the updating thread instantiates a new Array nodeC
and creates a subtree linking it and the current index root:

Concat(root,C)

This subtree becomes a new version of the root. Observe that
while this transformation does not preserve logical equiva-
lence, it preserves structural correctness. Although only one
thread may update the index at a time, updates do not block
the background worker thread.

6.3 Background Organization

The Fluid cog relies on a just-in-time optimizer: a back-
ground thread that incrementally organizes the structure. In
our prototype implementation, the optimizer considers two
organizational strategies for newly loaded data: (1) database
cracking [7] (i.e., Crack) and (2) directly sorting the data
(i.e., Sort). TheCrack transform has lower upfront cost than
the Sort transform (scaling asO(N ) vsO(N logN )), but pro-
vides a smaller benefit (creating two smaller arrays that now
need to be sorted).

Our prototype Fluid cog allows users to trade off between
these long- and short-term benefits via a threshold parameter.
Array nodes larger than the threshold size are cracked, while
smaller arrays are sorted. Larger arrays are transformed
before smaller arrays. Once all nodes have either been sorted
or cracked (i.e., the type of all nodes in the structure is either
Sorted orBinTree), the organizer appliesMerge to coalesce
the entire tree into a single Sorted.

6.4 Concurrent Access

Unused nodes are garbage collected by reference counting
using a C++ shared_ptr. Pointers to the nodes are themselves
wrapped in a handle, also implemented as a shared_ptr. Ac-
cess to the contents of a handle is performed by atomic_load

and atomic_store to avoid split writes.
Content updates to the Fluid cog are protected by an

atomic test and swap (atomic_compare_exchange_strong). The
writer thread creates a new root node as described above,
copying the old root’s handle. The atomic test and swap
replaces the old root handle3 if and only if the root pointer
was unchanged in the interim.

7 Evaluation

Wenext evaluate the performance of Fluid cog in comparison
to other commonly used data structures. Our results show
that: (1) In the longer term, Fluid cog has minimal overheads
relative to standard in-memory data structures; (2) In the
short term, Fluid cog can out-perform standard in-memory
data structures; and (3) Concurrency introduces minimal
overheads.

7.1 Experimental setup

All experiments were run on a 2×6-core 2.5 GHz Intel Xeon
server with 198 GB of RAM and running Ubuntu 16.04 LTS.
Experimental code was written in C++ and compiled with
GNU C++ 5.4.0. Each element in the data set is a pair of key
and value, each an 8-Byte integer. Unless otherwise noted,
we use a data size of 109 records (16GB) with keys gener-
ated uniformly at random. To mitigate experimental noise,
we use srand() with an arbitrary but consistent value for
all data generation. To put our performance numbers into
3Note that the handle itself is replaced, not the pointer referenced by the
handle.
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context, we compare against (1)R/B Tree: the C++ standard-
template library (STL) map implementation (a classical red-
black tree), (2) HashTable the C++ standard-template li-
brary (STL) unordered-map implementation (a hash table),
and (3)BTree a publicly available implementation of b-trees4.
For all three, we used the find() method for point lookups
and lower_bound()/++ (where available) for range-scans.
For point lookups, we selected the target key uniformly at
random5. For range scans, we selected a start value uniformly
at random and the end value so as to visit approximately 1000
records. Except where noted, access times are the average of
1000 point lookups or 50 range scans.

For Fluid cog we used the Crack/Sort policy defined in
section Section 6.3 and varied the threshold to either 106,
107, 108, or 109 records. When the threshold is 109 records
(or more), the entire input is sorted in one step, modeling
the behavior of a classical or immutable data structure. The
initial data is encoded as a single Unsorted Array cog. For
point lookups we use the get() access path, and for range
scans we use the iterator() access path. By default, we
measure Fluid cog read performance through a synchronous
(i.e., with the worker thread paused) microbenchmark. We
contrast synchronous and asynchronous performance in
Section 7.3.

Synchronous read performance was measured through a
sequence of trials, each with a progressively larger number
of transforms (i.e., a progressively larger fragment of the
policy’s trace) applied to the Fluid cog. We measured total
time to apply the trace fragment (including the cost of se-
lecting which transforms to apply) before measuring access
latencies. For concurrent read performance a client thread
measured access latency approximately once per second.

7.2 Cost vs Benefit Over Time

Our first set of experiments mirrors Figure 1, tracking the
synchronous performance of point lookups and range scans
over time. The results are shown in Figure 7a and Figure 7b
The x-axis shows time elapsed, while the y-axis shows index
access latency at that point in time. In both sets of exper-
iments, we include access latencies and setup time for the
R/B-Tree (yellow star), the HashTable (black triangle), and
the BTree (pink circles) We treat the cost of accessing an
incomplete data structure as infinite, stepping down to the
structure’s normal access costs once it is complete.
In general, lower crack thresholds achieve faster upfront

performance by sacrificing long-term performance. A crack
threshold of 106 (approximately 103 cracked partitions) takes
approximately twice as long to reach convergence as a thresh-
old of 109 (sort everything upfront)

4https://github.com/JGRennison/cpp-btree
5We also tested a heavy-hitter workload that queried for 30% of the keyspace
80% of the time, but found no significant differences between the workloads.

Unsurprisingly, the Hash Table has the best overall per-
formance curve for point lookups. However, even it needs
upwards of 6 minutes worth of data loading before it is ready.
By comparison, a Fluid cog starts off with a 10 second re-
sponse time, and has dropped to under 3 seconds by the 3
minute mark. The BTree significantly outperforms the R/B-
Tree on both loading and point lookup cost, but still takes
nearly 25 minutes to fully load. By that point the Threshold
108 policy Fluid cog has already been serving point lookups
with a comparable latency (after its sort phase) for nearly 5
minutes.

7.3 Synchronous vs Concurrent

Figures 8a, 8b, and 8c contrast the synchronous performance
of Fluid cog with a more realistic concurrent workload. Per-
formance during the crack phase is comparable, though ad-
mittedly with a higher variance. As expected, during the
sort phase, performance begins to bifurcate into fast-path
accesses to already sorted arrays and slow-path scans over
unsorted array nodes.
The time it takes the worker to converge is largely un-

affected by the introduction of concurrency. However, as
the structure begins to converge, we see a constant 100µs
overhead compared to synchronous access. We also note
periodic 100ms bursts of latency during the sort phases of all
trials. We believe these are caused when the worker thread
pointer-swaps in a new array during the merge phase, as the
entire newly created array is cold for the client thread.

7.4 Short-Term Benefits for interactive workloads

One of the primary benefits of Fluid cog data structures
is that they can provide significantly better performance
during the transition period. This is particularly useful in
interactive settings where users pose tasks comparatively
slowly. We next consider such a hypothetical scenario where
a data file is loaded and each data structure is given a short
period of time (5 seconds) to prepare. In these experiments,
we use a cracking threshold of 105 (our worst case), and
vary the size of the data set from 106 records (16MB) to 109
records (16GB). The lookup time is the time until an answer
is produced: the cost of a point lookup for the Fluid cog, or
the time required to finish loading and query the structure.
The baseline data structures are accessible only once fully
loaded, so we model the user waiting until the structure is
ready before doing a point lookup. Up through 107 records,
the unordered_map completes loading within 5 seconds. In
every other case, the Fluid cog is able to produce a response
orders of magnitude faster.

8 Related Work

Fluid cog specifically extends our prior work on Just-in-Time
Data Structures [12] with a framework for defining policies,
tools for optimizing across families of policies, and a runtime

https://github.com/JGRennison/cpp-btree
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Figure 7. Performance improvement over time as each Fluid cog is organized
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Figure 8. Synchronous vs Concurrent performance of the Fluid cog on point lookups.
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Figure 9. Point lookup latency relative to data size.

that supports optimization in the background rather than as
part of queries. Most notably, this enables efficient dynamic
data reorganization as an ongoing process rather than as an
inline, blocking part of query execution.
Our goal is also spiritually similar to The Data Calcula-

tor [11]. Like our policy optimizer, it searches through a

large space of index design choices for one suitable for a tar-
get workload. However, in contrast to Fluid cog, this search
happens once at compile time and explores mostly homo-
geneous structures. In principle, the two approaches could
be combined, using the Data Calculator to identify optimal
structures for each workload and using Fluid cog to migrate
between structures as the workload changes.
Also related is a recently proposed form of “Resumable”

Index Construction [1]. The primary challenge addressed
by this work is ensuring that updates arriving after index
construction begins are properly reflected in the index.While
we solve this problem (semi-)functional data structures, the
authors propose the use of temporary buffers.

Adaptive Indexing. Fluid cog is a form of adaptive in-
dexing [5, 9], an approach to indexing that re-uses work
done to answer queries to improve index organization. Ex-
amples of adaptive indexes include Cracker Indexes [7, 8],
Adaptive Merge Trees [6], SMIX [23], and assorted hybrids
thereof [10, 12]. Notably, a study by Schuhknecht et. al. [19]
compares (among other things) the overheads of cracking
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to the costs of upfront indexing. Aiming to optimize over-
all runtime, upfront indexing begins to outperform cracker
indexes after thousands to tens of thousands of queries. By
optimizing the index in the background, Fluid cog avoids
introducing latency into the query itself as part of data reor-
ganization as part of the query itself.

Organization in the Background. Unlike adaptive in-
dexes, which inline organizational effort into normal data-
base operations, several index structures are designed for
background performance optimization. Active databases [24]
can defer reactions to database updates until CPU cycles are
available. More recently, bLSM trees [20] were proposed as
a form of log-structured merge tree that coalesces partial
indexes together in the background. A wide range of sys-
tems including COLT [18], OnlinePT [2], and Peloton [17]
use workload modeling to dynamically select, create, and
destroy indexes, also in the background.

Self-Tuning Databases. Database tuning advisors have
existed for over two decades [3, 4], automatically selecting
indexes to match specific workloads. However, with recent
advances in machine learning technology, the area has seen
significant recent activity, particularly in the context of index
selection and design. OtterTune [22] uses fine-grained work-
load modeling to predict opportunities for setting database
tuning parameters, an approach complimentary to our own.

Generic Data Structure Models. More spiritually similar
to our work is The Data Calculator [11], which designs cus-
tom tree structures by searching through a space of dozens
of parameters describing both tree and leaf nodes. A simi-
larly related effort uses small neural networks [13] as a form
of universal index structure by fitting a regression on the
CDF of record keys in a sorted array. Work done in [14]
is specialized for monotonically increasing data. Fluid cog
are not limited to being monotonic in nature. But for sub-
structures of Fluid cog that are generated by monotonic
transforms like update we can extend Fluid cog to represent
the substructures as a lattice.

Functional data structures in practice. Immutable data
structures are used extensively in functional languages like
Scala and Clojure. Considerable effort led to structures opti-
mized for different data access patterns. For example, Scala’s
RRB Vectors [21] are a sequence structure that allows effi-
cient concatenation, inserts and splits using “transient” nodes
that lazily encode incomplete updates. Like Fluid cog, tran-
sient nodes allow for a limited form of mutability. However,
while Fluid cog uses mutability to allow for dynamic adapt-
ability, RRB Vectors use mutability to dynamically coalesce
sequences of updates. Fluid cog could benefit from such
optimizations to improve update efficiency.

9 Conclusions and Future Work

In this paper, we introduced fluid data structures. Fluid data
structures rely on handles, a new form of object reference
that does not guarantee physical immutability, but rather
guarantees logical immutability. We illustrated fluid data
structures in practice through a data structure called Fluid
cog. The physical layout of any Fluid cog instance corre-
sponds to a sentence in a composable organizational grammar

(cog). We proposed an algebra of rewrite rules called trans-
forms that correspond to small modifications to the physical
layout of a Fluid cog instance. Specifically, we demonstrated
a set of atomic transforms that are guaranteed to preserve the
correctness and logical contents of the instance. Using a set
of hierarchical meta-transforms, we also demonstrated that
correctness and equivalence are preserved when an atomic
transform is applied to any node of a Fluid cog instance.
Finally, we showed how Fluid cog instances could be opti-
mized in the background, allowing them to compete with
standard off-the-shelf map data structures.

In Appendix B, we explore the generality of cog through a
recently proposed index data structure taxonomy. We specif-
ically identify three key areas where extensions to cog can
make the grammar itself more general. First, more expres-
siveness can be achieved through new grammar terms that
capture additional organizational semantics (prefix match-
ing, hash partitioning) or that represent suspended computa-
tion (filter, join). Second, more efficient data layouts can be
achieved by creating new data structure nodes by fusing ex-
isting terms together. For example, an inner node of a B+Tree
can conceptually be expressed as a hierarchy of BinTree
terms fused together. Finally, cog can only express Tree-
shaped data structures. A similar conceptual model can be
developed for DAG-shaped data structures. We also observe
several additional areas where further performance tuning
is possible: First, our use of reference-counted pointers also
presents a performance bottleneck for high-contention work-
loads — we plan to explore more active garbage-collection
strategies. Second, implementing handles as indirect refer-
ences is an extremely conservative realization of fluid data
structures. As a result, Fluid cog is a factor of 2 slower at
convergence than mutable tree-based indexes. In some cases,
it may be feasible to inline handles as direct, rather than
indirect references. A final open challenge is the use of sta-
tistics to guide rewrite rules, both detecting workload shifts
to trigger policy shifts (e.g., as in Peloton [17]), as well as
identifying statistics-driven policies that naturally converge
to optimal behaviors for dynamic workloads.
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A Proofs

A.1 Correctness of Example Transforms

As a warm-up and an example of transform correctness, we
next review each of the transforms given in Figure 4 and
prove the correctness of each.

Proposition 1 (Identity is correct). Let id denote the identity

transform id(C) = C . id is both equivalence preserving and

structure preserving.

Lemma 1 (Sort is correct). Sort is both equivalence preserv-

ing and structure preserving.

Proof. For any instance C where typeof(C) , Array, cor-
rectness follows from Proposition 1.
Otherwise C = Array([r1, . . . , rN ]), and consequently

Sort(C) = Sorted(sort([r1, . . . , rN ])). To show correctness
we first need to prove that

D (Array([r1, . . . , rN ])) = D (Sorted(sort([r1, . . . , rN ])))

Let the one-to-one (hence invertable) function f : [1,N ] →

[1,N ] denote the transposition applied by sort.

D (Sorted(sort([r1, . . . , rN ])))

= D
(
Sorted(

[
rf −1(1), . . . , rf −1(N )

]
))

)
=
{��� rf −1(1), . . . , rf −1(N )

���}
= {| r1, . . . , rN |}

= D (Array([r1, . . . , rN ]))

giving us equivalence preservation. Structure preservation
requires that

[
rf −1(1), . . . , rf −1(N )

]
be in sorted order, which

it is by construction. Thus, Sort is a correct transform. □

Lemma 2 (UnSort is correct). UnSort is both equivalence

preserving and structure preserving.

Proof. For any instance C where typeof(C) , Sorted, cor-
rectness follows from Proposition 1.
Otherwise C = Sorted([r1 . . . rN ]) and we need to show

first that D (Sorted([r1 . . . rN ])) = D (Array([r1 . . . rN ])).
The logical contents of both are {| r1 . . . rN |}, so we have
equivalence. Structure preservation is a given since any
Array instance is structurally correct. □

Lemma 3 (Divide is correct). Divide is both equivalence

preserving and structure preserving.

Proof. For any instance C where typeof(C) , Array, cor-
rectness follows from Proposition 1.
Otherwise C = Array([r1 . . . rN ]) and we need to show

first that

D (Array([r1 . . . rN ])) =

D

(
Concat

(
Array(

[
r1 . . . r ⌊ N

2

⌋ ]), Array([r ⌊ N
2

⌋
+1

. . . rN

]
)

))
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Evaluating the right hand side of the equation recursively
and simplifying, we have

=
{���r1 . . . r⌊ N2 ⌋ ���} ⊎ {���r⌊ N2 ⌋+1 . . . rN ���}

=
{���r1 . . . r⌊ N2 ⌋ , r⌊ N2 ⌋+1 . . . rN ���}

= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Hence we have equivalence preservation. The Array in-
stances are always structurally correct andConcat instances
are structurally correct if their children are, so we have struc-
tural preservation as well. Hence, Divide is correct. □

Lemma 4 (Crack is correct). Crack is both equivalence pre-

serving and structure preserving.

Proof. For any instance C where typeof(C) , Array, cor-
rectness follows from Proposition 1.
Otherwise C = Array([r1 . . . rN ]) and we need to show

first that
D (Array([r1 . . . rN ])) =

D
(
BinTree

(
k, Array(

[
ri

�� ri ≺ k
]
), Array(

[
ri

�� k ⪯ ri
]
)
) )

Here k = id (ri ) for an arbitrary i . Evaluating the right hand
side of the equation recursively and simplifying, we have

=
{�� ri �� ri ≺ k

��} ⊎ {�� ri �� k ⪯ ri
��}

=
{�� ri �� (ri ≺ k) ∨ (k ⪯ ri )

��}
= {| r1 . . . rN |} = D (Array([r1 . . . rN ]))

Instances ofArray are always structurally correct. The newly
created BinTree instance is structurally correct by construc-
tion. Thus Crack is correct. □

Lemma 5 (Merge is correct). Merge is both equivalence pre-
serving and structure preserving.

Proof. For any instance C that matches neither ofMerge’s
cases, correctness follows from Proposition 1. Of the remain-
ing two cases, we first consider

C = Concat(Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

The proof of equivalence preservation is identical to that of
Theorem 3 applied in reverse. In the second case

C = BinTree( _ ,Array([r1 . . . rN ]),Array([rN+1 . . . rM ]))

Noting that BinTree( _ ,C1,C2) ≈ Concat(C1,C2) by the
definition of logical contents, the proof of equivalence preser-
vation is again identical to that of Theorem 3 applied in re-
verse. For both cases, structural preservation is given by the
fact that Array is always structurally correct. ThusMerge

is correct. □

Lemma 6 (PivotLeft is correct). PivotLeft is both equiva-

lence preserving and structure preserving.

Proof. For any instanceC thatmatches neither ofPivotLeft’s
cases, correctness follows from Proposition 1. Of the remain-
ing two cases, we first consider

C = Concat(C1,Concat(C2,C3))

Equivalence follows from from associativity of bag union.

D (Concat(C1,Concat(C2,C3)))

= D (C1) ⊎ D (C2) ⊎ D (C3)

= D (Concat(Concat(C1,C2),C3))

Concat instances are structurally correct if their children
are, so the transformed instance is structurally correct if
α(C1), α(C2), and α(C3). Hence, if the input is structurally
correct, then so is the output and the transform is structurally
preserving in this case. The proof of equivalence preservation
is identical for the case where

C = BinTree(k1,C1,BinTree(k2,C2,C3)) and k1 ≺ k2

For structural preservation, we additionally need to show:
(1) ∀r ∈ D (C1) : r ≺ k1, (2) ∀r ∈ D (C2) : k1 ⪯ r , (3) ∀r ∈

D (BinTree(k1,C1,C2)) : r ≺ k2, and (4) ∀r ∈ D (C3) : k2 ⪯

r given that C is structurally correct.
Properties (1) and (4) follow trivially from the structural

correctness of C . Property (2) follows from structural cor-
rectness of C requiring that ∀r ∈ (D (C2) ⊎ D (C3)) : k1 ⪯ r
To show property (3), we first use transitivity to show that
∀r ∈ D (C1) : r ≺ k1 ≺ k2. For the remaining records,
∀r ∈ D (C2) : r ≺ k2 follows trivially from the structural
correctness of C . Thus PivotLeft is correct 6 □

Corrolary 2. PivotRight is correct.

A.2 LHS / RHS are meta transforms

Proof. We show only the proof for LHS; The proof for RHS

is symmetric. We first show that LHS is an endofunctor. The
kind of LHS is appropriate, so we only need to show that it
satisfies the properties of a functor. First, we show that LHS

commutes the identity (id). In other words, for any instance
C , LHS[id](C) = C . In the case where C = Concat(C1,C2),
then

LHS[id](C) = Concat(id(C1),C2) = Concat(C1,C2)

The case where typeof(C) = BinTree is identical, and
LHS[T ] is already the identity in all other cases. Next, we
need to show that LHS distributes over composition. That
is, for any instance C and transforms T1 and T2 we need that

LHS[T1 ◦T2](C) = (LHS[T1] ◦ LHS[T2]) (C)

If C = Concat(C1,C2), LHS[T1 ◦ T2](C) = Concat(C ′
1,C2),

where C ′
1 = T2(T1(C1)). For the other side of the equation:

(LHS[T1] ◦ LHS[T2]) (C) = LHS[T2](LHS[T1](C))

= LHS[T2](Concat(T1(C1), C2)

= Concat(T2(T1(C1)), C2)

The case where typeof(C) = BinTree is similar, and the
remaining cases follow from LHS[T ] = id for all other
cases. Thus LHS is an functor. For LHS to be a meta trans-
form, it remains to show that for any correct transform T ,
LHS[T ] is also correct. We first consider the case where

6Note the limit on k1 ≺ k2, which could be violated with an empty C2.
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C = Concat(C1,C2) and assume that T (C1) is both equiva-
lence and structure preserving, or equivalently that D (C1) =

D (T (C1)) and StrCor (C1) =⇒ StrCor (T (C1)).

D (LHS[T ](C)) = D (Concat(T (C1),C2))

= D (Concat(C1,C2)) = D (C)

Thus, LHS[T ] is equivalence preserving for this case. The
proof of structure preservation follows a similar pattern

StrCor (LHS[T ](C)) = StrCor (Concat(T (C1), C2))

= StrCor (T (C1)) ∧ StrCor (C2)

Given StrCor (C) = StrCor (C1) ∧ StrCor (C2) and the
assumption of StrCor (C1) =⇒ StrCor (T (C1)), it follows
that LHS[T ] is structure preserving for thisC . The proof for
the case where C = BinTree(k,C1,C2) is similar, but also
requires showing that ∀r ∈ D (T (C1)) : r ≺ k under the
assumption that ∀r ∈ D (C1) : r ≺ k . This follows from our
assumption that D (T (C1)) = D (C1). The remaining cases of
LHS are covered under Proposition 1. Thus, LHS is a meta
transform. □

A.3 Target Updates are Bounded

Proof. By recursion over T . The atomic transforms are the
base case. By definition id is not in the active domain, so we
only need to consider seven possible atomic transforms. For
Sort or UnSort to be in the active domain, typeof(C) must
be Array or Sorted respectively. By the definition of each
transform, typeof(C ′) will be Sorted or Array respectively
By ??, the active domain of any Array or Sorted instance is
bounded by |A| and by construction, |WC | = |DC | ≤ |A|.
Hence, the total change in the weighted targets for this
case is at most 2 × |A|. Following a similar line of reason-
ing, the weighted targets change by at most 4 × |A| ele-
ments as a result of anyDivide,Crack, orMerge. Next con-
sider C = Concat(Concat(C1,C2),C3), and consequently
C ′ = PivotLeft(C) = Concat(C1,Concat(C2,C3)). For each
transform of the form LHS[LHS[T ]] in the active domain of
C , there will be a corresponding LHS[T ], asC1 is identical in
both paths. Similar reasoning holds for C2 and C3. Because
the policy is local, the weighted targets are independent of
any LHS or RHS meta transforms modifying them. Thus, at
most, the active domain will lose T and LHS[T ] for T ∈ A,
and gainT and RHS[T ] forT ∈ A, and the weighted targets
will change by no more than 4 × |A| elements. Similar lines
of reasoning hold for the other case of PivotLeft and for
both cases of PivotRight. The recursive cases are trivial,
since the weighted targets are independent of prefixes in a
local policy. □

B On the Generality of cog

Ideally, we would like cog to be expressive enough to en-
code the instantaneous state of any data structure. Infinite
generality is obviously out of scope for this paper. However

we now take a moment to assess exactly what index data
structure design patterns are supported in cog.
As a point of reference we use a taxonomy of data struc-

tures proposed as part of the Data Calculator [11]. The data
calculator taxonomy identifies 22 design primitives, each
with a domain of between 2 and 7 possible values. Each of
the roughly 1018 valid points in this 22-dimensional space
describes one possible index structure. To the best of our
knowledge, this represents the most comprehensive a survey
of the space of possible index structures developed to date.

The data calculator taxonomy views index structures through
the general abstraction of a tree with inner nodes and leaf
nodes. This abstraction is sometimes used loosely: A hash
table of size N, for example, is realized as as a tree with
precisely one inner-node and N leaf nodes. Each of the tax-
onomy’s design primitives captures one set of mutually ex-
clusive characteristics of the nodes of this tree and how they
are translated to a physical layout.
Figure 10 classifies each of the design primitives as (1)

Fully supported by cog if it generalizes the entire domain,
(2) Partially supported by cog if it supports more than one
element of the domain, or (3) Not supported otherwise. We
further subdivide this latter category in terms of whether
support is feasible or not. In general, the only design primi-
tives that cog can not generalize are related to mutability,
since cog targets functional and fluid data structures.
cog completely generalizes 7 of the remaining 22 primi-

tives. We first explain these primitives and how cog general-
ize them. Then, we propose three extensions that, although
beyond the scope of this paper, would fully generalize the
final 14 primitives. For each, we briefly discuss the extension
and summarize the challenges of realizing it.

Key retention (1). This primitive expresses whether inner
nodes store keys (in whole or in part), mirroring the choice
between Concat and BinTree.

Intra-node access (5). This primitive expresses whether
nodes (inner or child) allow direct access to specific children
or whether they require a full scan, mirroring the distinction
between cog nodes with and without semantic constraints.

Key partitioning (9). This primitive expresses how newly
added values are partitioned. Examples include by key range
(as in a B+Tree) or temporally (as in a log structured merge
tree [16]). Although sentences in cog have no concept of
updates, the right set of transforms can converge to a com-
parable partitioning result.

Sub-block homogeneous (18). This primitive expresses
whether all inner nodes are homogeneous or not.

Sub-block consolidation/instantiation (19/20). These
primitives express how and when organization happens. The
specific choice of a policy for applying transformations to a
Fluid cog is beyond the scope of this paper, but appropriate
sequences are possible.
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# Data Calculator Primitive cog Note

1 Key retention ◗ No partial keys
2 Value retention ❍
3 Key order ◗ K-ary orders unsupported
4 Key-Value layout ❍ No columnar layouts
5 Intra-node access ●
6 Utilization ✗
7 Bloom filters ❍
8 Zone map filters ◗ Implicit via BinTree
9 Filter memory layout ❍ Requires filters (7,8)
10 Fanout/Radix ❍ Limited to 2-way fanout
11 Key Partitioning ●
12 Sub-block capacity ✗
13 Immediate node links ❍ Simulated by iterator impl.
14 Skip-node links ❍
15 Area links ❍ Simulated by iterator impl.
16 Sub-block physical location. ❍ Only pointed supported
17 Sub-block physical layout. ◗/ ✗ Realized by merge rewrite
18 Sub-block homogeneous ●
19 Sub-block consolidation ● Depends on policy
20 Sub-block instantiation ● Depends on policy
21 Sub-block link layout ❍ Requires links (13,14,15)
22 Recursion allowed ●

●: Full Support ◗: Partial Support ❍: Support Possible
✗: Not applicable to immutable data structures

Figure 10. Support in cog for the DC Taxonomy [11]

Recursion allowed (22). This primitive expresses whether
inner nodes form a bounded depth tree, a general tree, or
a “tree” with a single node at the root. All three are valid
sentences in cog.

B.1 Supporting New cog Atoms

Five of the remaining primitives can be generalized by the
addition of three new atoms to cog. First, we would need
a generalization of BinTree atoms capable of using partial
keys as in a Trie (primitive 1), or hash values (primitive
3) Second, a unary Filter atom that imposes a constraint
on the records below it could implement both boom filters
(primitives 7,9) and zone maps (primitives 8,9). These two
atoms are conceptually straightforward, but introduce new
transforms and increase the complexity of the search for
effective policies.
The remaining challenge is support for columnar/hybrid

layouts (primitive 4). Columnar layouts increase the com-
plexity of the formalism by requiring multiple record types
and support for joining records. Accordingly, we posit that
a binary Join atom, representing the collection of records
obtained by joining its two children could efficiently capture
the semantics of columnar (and hybrid) layouts.

B.2 Atom Synthesis

Five of the remaining primitives express various tactics for
removing pointers by inlining groups of nodes into contigu-
ous regions of memory. These primitives can be generalized
by the addition of a form of atom synthesis, where new atoms
are formed by merging existing atoms. Consider the Linked
List of Example 1. Despite the syntactic restriction over cog,
a single linked list element must consist of two nodes (a
Concat and a (single-record) Array), and an unnecessary
pointer de-reference is incurred on every lookup. Assume
that we could define a new node type: A linked list element
(Link(R,C)) consisting of a record and a forward pointer.
Because this node type is defined in terms of existing node
types, it would be possible to automatically synthesize new
transformations for it from existing transformations, and
existing performance models could likewise be adapted.
Atom synthesis could be used to create inner nodes that

store values (primitive 2), increase the fanout of Concat and
BinTree nodes (primitive 10), inline nodes (primitive 16),
and provide finer-grained control over physical layout of
data (primitive 17).

B.3 Links / DAG support

The final four remaining properties (13, 14, 15, and 20) ex-
press a variety of forms of link between inner and leaf nodes.
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Including such links turns the resulting structure into a di-
rected acyclic graph (DAG). In principle, it should be possible
to generalize transforms for arbitrary DAGs rather than just
trees as we discuss in this paper. Such a generalization would
require additional transforms that create/maintain the non-
local links and more robust garbage collection.
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