
TreeToaster: Towards an IVM-Optimized Compiler
Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, Lukasz Ziarek

University at Buffalo
[dbalakri,carlnues,okennedy,lziarek]@buffalo.edu

Abstract
A compiler’s optimizer operates over abstract syntax trees
(ASTs), continuously applying rewrite rules to replace sub-
trees of the AST with more efficient ones. Especially on large
source repositories, even simply finding opportunities for
a rewrite can be expensive, as optimizer traverses the AST
naively. In this paper, we leverage the need to repeatedly find
rewrites, and explore options for making the search faster
through indexing and incremental view maintenance (IVM).
Concretely, we consider bolt-on approaches that make use
of embedded IVM systems like DBToaster, as well as two
new approaches: Label-indexing and TreeToaster, an AST-
specialized form of IVM. We integrate these approaches into
an existing just-in-time data structure compiler and show
experimentally that TreeToaster can significantly improve
performance with minimal memory overheads.

CCS Concepts: • Information systems → Database
views; Query optimization.

Keywords: Abstract Syntax Tress, Compilers, Indexing, In-
cremental View Maintenance
ACM Reference Format:
Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, Lukasz
Ziarek. 2021. TreeToaster: Towards an IVM-Optimized Compiler.
In Proceedings of ACM Conference (Conference’17). ACM, New York,
NY, USA, 23 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Typical database query optimizers, like Apache Spark’s Cat-
alyst [4] and Greenplum’s Orca [37], work with queries en-
coded as abstract syntax trees (ASTs). A tree-based encoding
makes it possible to specify optimizations as simple, compos-
able, easy-to-reason-about pattern/replacement rules. How-
ever, such pattern matching can be very slow. For example,
Figure 1 shows a breakdown of how Catalyst spends its time
optimizing 1 the 22 queries of the TPC-H benchmark [40].
33-45% of its time is spent searching for optimization oppor-
tunities, using Scala’s match operator to recursively pattern-
match with every node of the tree A further 27-43% of the
optimizer’s time is spent in optimizer’s outer fixpoint loop
(e.g., comparing ASTs to decide whether the optimizer has
1The instrumented version of spark can be found at https://github.com/

UBOdin/spark-instrumented-optimizer

Conference’17, July 2017, Washington, DC, USA
2021. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q1
0

Q1
1

Q1
2

Q1
3

Q1
4

Q1
5

Q1
6

Q1
7

Q1
8

Q1
9

Q2
0

Q2
1

Q2
2

TPC-H Query #

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To
ta

l T
im

e
Sp

en
t O

pt
im

izi
ng

 (s
ec

) Search
Ineffective Rewrites
Effective Rewrites
Fixpoint Loop

Figure 1. Time breakdown of the Catalyst optimizer on the
22 queries of the TPC-H Benchmark, including (i) searching
the AST for candidate rewrites (Search), (ii) constructing
new AST subtrees before aborting (Ineffective), (iii) con-
structing new AST subtrees (Effective), and (iv) In the opti-
mizer’s outer loop looking for a fixpoint (Fixpoint).

converged or if further optimization opportunities might
exist). On larger queries, pattern matching can be tens or
even hundreds of seconds2.

In this paper, we propose TreeToaster, an approach to in-
cremental view maintenance specialized for use in compilers.
As we show, TreeToaster virtually eliminates the cost of
finding nodes eligible for a rewrite. In lieu of repeated linear
scans through the AST for eligible nodes, TreeToaster ma-
terializes a view for each rewrite rule, containing all nodes
eligible for the rule, and incrementally maintains it as the
tree evolves through the optimizer.
Naively, we might implement this incremental mainte-

nance scheme by simply reducing the compiler’s pattern
matching logic to a standard relational query language,
and “bolting on” a standard database view maintenance sys-
tem [24, 35]. This simple approach typically reduces search
costs to a (small) constant, while adding only a negligible
overhead to tree updates. However, classical view mainte-
nance systems come with a significant storage overhead.
As we show in this paper, TreeToaster improves on the
“bolt-on” approach by leveraging the fact that both ASTs and
pattern queries are given as trees. As we show, when the
data and query are both trees, TreeToaster achieves similar

2This number is smaller, but still notable for Orca, accounting for 5-20% of
the optimizer’s time on a similar test workload.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/UBOdin/spark-instrumented-optimizer
https://github.com/UBOdin/spark-instrumented-optimizer
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

Latency

M
e
m

o
ry

Bolt-On IVM

TREETOASTER
Iterative Search

(Normal Compiler)

Figure 2. TreeToaster achieves AST pattern-matching per-
formance competitive with “bolting-on” an embedded IVM
system, but with negligible memory overhead.

maintenance costs without the memory overhead of caching
intermediate results (Figure 2). TreeToaster further reduces
memory overheads by taking advantage of the fact that the
compiler already maintains a copy of the AST in memory,
with pointers linking nodes together. TreeToaster com-
bines these compiler-specific optimizations with standard
techniques for view maintenance (e.g., inlining and compil-
ing to C++ [24]) to produce an incremental-view mainte-
nance engine that meets or beats state-of-the-art view main-
tenance on AST pattern-matching workloads, while using
much less memory.
To illustrate the advantages of TreeToaster, we apply

it to a recently proposed Just-in-Time Data Structure com-
piler [6, 21] that reframes tree-based index data structures as
ASTs. Like other AST-based optimizers, pattern/replacement
rules asynchronously identify opportunities for incremental
reorganization like database cracking [19] or log-structured
merges [31]. We implement TreeToaster within JustIn-
TimeData and show that it virtually eliminates AST search
costs with minimal memory overhead.

Concretely, the contributions of this paper are: (i) We for-
mally model AST pattern-matching queries and present a
technique for incrementally maintaining precomputed views
over such queries; (ii) We show how declaratively specified
rewrite rules can be further inlined into view maintenance to
further reduce maintenance costs; (iii) As a proof of concept,
we “bolt-on” DBToaster, an embeddable IVM system, onto a
just-in-time data-structure compiler [6, 21]. This modifica-
tion dramatically improves performance, but adds significant
memory overheads; (iv) We present TreeToaster, a IVM
system optimized for compiler construction. TreeToaster
avoids the high memory overheads of bolt-on IVM; (v) We
present experiments that show that TreeToaster signifi-
cantly outperforms “bolted-on” state-of-the-art IVM systems
and is beneficial to the JustInTimeData compiler.

2 Notation and Background
In its simplest form, a typical compiler’s activities break
down into three steps: parsing, optimizing, and output.

(Arith, {op↦+}, ...)

(Arith, {op↦×}, ...) (Var, {name↦x}, [])

(Var, {name↦y}, [])(Const, {val↦2}, [])

Figure 3. An AST for the expression 2 * y + x

Parsing. First, a parser converts input source code into
a structured Abstract Syntax Tree (AST) encoding of the
source.

Example 2.1. Figure 3 shows the AST for the expression
2 * y + x. AST nodes have labels (e.g., Arith, Var, or
Const) and attributes (e.g., {op ↦→ +} or {val ↦→ 2}).

We formalize an AST as a tree with labeled nodes, each
annotated with zero or more attributes.

Definition 1 (Node). An Abstract Syntax Tree node 𝑁 =

(ℓ, 𝐴, 𝑁) is a 3-tuple, consisting of (i) a label ℓ drawn from an
alphabet L; (ii) annotations 𝐴 : Σ𝑀 → D, a partial map from
an alphabet of attribute names Σ𝑀 to a domain D of attribute
values; and (iii) an ordered list of children 𝑁 .

We define a leaf node (denoted isleaf(𝑁)) as a node that
has no child nodes (i.e., 𝑁 = ∅). We assume that nodes follow
a schema S : L → 2Σ𝑀 × N; For each label (ℓ ∈ S), we fix a
set of attributes that are present in all nodes with the label
(𝑥 ∈ 2Σ𝑀), as well as an upper bound on the number of
children (𝑐 ∈ N).
Optimization. Next, the optimizer rewrites the AST, itera-
tively applying pattern-matching expressions and deriving
replacement subtrees. We note that even compilers written
in imperative languages frequently adopt a declarative style
for expressing pattern-matching conditions. For example,
ORCA [37] (written in C++) builds small ASTs to describe
pattern matching structures, while Catalyst [4] (written in
Scala) relies on Scala’s native pattern-matching syntax.

Example 2.2. A common rewrite rule for arithmetic elimi-
nates no-ops like addition to zero. For example, the subtree

(Arith, {op ↦→ +}, [(Const, {val ↦→ 0}, []),
(Var, {name ↦→ 𝑏}, [])])

can be replaced by (Var, {name ↦→ 𝑏}, []) If the optimizer
encounters a subtree with an Arith node at the root, Const
and Var nodes as children, and a 0 as the val attribute of the
Const node; it replaces the entire subtree by the Var node.

The optimizer continues searching for subtrees matching
one of its patterns until no further matches exist (a fixed
point), or an iteration threshold or timeout is reached.
Output. Finally, the compiler uses the optimized AST as
appropriate (e.g., by generating bytecode or a physical plan).

2

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

Θ : atom = atom | atom < atom | Θ ∧ Θ | Θ ∨ Θ | ¬Θ | T | F
atom : const | ΣI .Σ𝑀 | atom [+,−,×,÷] atom

Figure 4. Constraint Grammar

⟦𝑞(ℓ, 𝐴, [𝑁1 . . . 𝑁𝑛])⟧ =



T, ∅ if 𝑞 = AnyNode

T, Γ if 𝑞 = Match(ℓ𝑞, 𝑖, [𝑞1 . . . 𝑞𝑛], 𝜃)
ℓ𝑞 = ℓ, 𝜃 (Γ),
⟦𝑞1 (𝑁1)⟧ = T, Γ1
. . . ⟦𝑞𝑛 (𝑁𝑛)⟧ = T, Γ𝑛,
Γ = { 𝑖 → 𝐴 } ∪⋃𝑘∈[𝑛]Γ𝑘

F, ∅ otherwise

Figure 5. Semantics for pattern queries (𝑞 ∈ Q)

2.1 Pattern Matching Queries
We formalize pattern matching in the following grammar:

Definition 2 (Pattern). A pattern query 𝑞 ∈ Q is one of

Q : AnyNode | Match(L, ΣI, 𝑄,Θ)

The symbol Match(ℓ𝑞, 𝑖, 𝑄, 𝜃) indicates a structural match
that succeeds iff (i) The matched node has label ℓ𝑞 , (ii) the
children of the matched node recursively satisfy 𝑞𝑖 ∈ 𝑄 ,
and (iii) the constraint 𝜃 over the attributes of the node
and its children is satisfied. The node variable 𝑖 ∈ ΣI is
used to identify the node in subsequent use, for example
to reference the node’s attributes in the constraint (𝜃). The
symbol AnyNode matches any node. Figure 5 formalizes the
semantics of the Q grammar.
The grammar for constraints is given in Figure 4, and

its semantics are typical. A variable atom 𝑖 .𝑥 is a 2-tuple
of a Node name (𝑖 ∈ ΣI) and an Attribute name (𝑥 ∈ Σ𝑀),
respectively, and evaluates to Γ(𝑖) (𝑥), given some scope Γ :
ΣI → Σ𝑀 → D. This grammar is expressive enough to
capture the full range of comparisons (>, ≥, ≤, <, =, <), and
so we use these freely throughout the rest of the paper.

Example 2.3. Returning to Example 2.2, only Arith nodes
over Const and Var nodes as children are eligible for the
simplification rule. The corresponding pattern query is:

Match(Arith, 𝐴, [Match(Const, 𝐵, [], {𝐵.val = 0}),
Match(Var,𝐶, [],T)], {𝐴.op = +})

Note the constraint on the Const match pattern; This sub-
pattern only matches a node with a val(ue) attribute of 0.

We next formalize pattern matching over ASTs. First, we
define the descendants of a node (denoted Desc(𝑁)) to be
the set consisting of 𝑁 and its descendants:

Desc(𝑁) △= { 𝑁 }
⋃

𝑘∈[𝑛]
Desc(𝑁𝑘) s.t. 𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

𝑅𝑞
△
=


∅ if 𝑞 = AnyNode

{ (𝑅ℓ AS 𝑖) } ⋃
𝑥 ∈[𝑛]

𝑅𝑞𝑥 if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃)

𝜃𝑞
△
=


T if 𝑞 = AnyNode

𝜃
∧

𝑥 ∈[𝑛]
𝜃𝑞𝑥 ∧ join(𝑖 .child𝑥 , 𝑞𝑥)

if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃)

join(𝑎, 𝑞) △=
{
T if 𝑞 = AnyNode

𝑎 = 𝑖 .id if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃)

𝑞 ≡ SELECT * FROM 𝑅𝑞 WHERE 𝜃𝑞

Figure 6. Converting a pattern𝑞 to an equivalent SQL query.

Definition 3 (Match). A match result, denoted 𝑞(𝑁), is the
subset of 𝑁 or its descendents on which 𝑞 evaluates to true.

𝑞(𝑁) △= { 𝑁 ′ | 𝑁 ′ ∈ Desc(𝑁) ∧ ∃Γ : 𝑞(𝑁 ′) = T, Γ }

Pattern Matching is Expensive. Optimization is a tight
loop in which the optimizer searches for a pattern match,
applies the corresponding rewrite rule to the matched node,
and repeats until convergence. Pattern matching typically
requires iteratively traversing the entire AST. Every applied
rewrite creates or removes opportunities for further rewrites,
necessitating repeated searches for the same pattern. Even
with intelligent scheduling of rewrites, the need for repeated
searches can not usually be eliminated outright, and as
shown in Figure 1 can take up to 45% of the optimizer’s
time.

Example 2.4. Continuing the example, the optimizer would
traverse the entire AST looking for Arith nodes with the
appropriate child nodes. A depth-first traversal ensures that
any replacement happens before the optimizer checks the
parent for eligibility. However, another rewrite may intro-
duce new opportunities for simplification (e.g., by creating
new Const nodes), and the tree traversal must be repeated.

3 Bolting-On IVM for Pattern Matching
As a warm-up, we start with a simple, naive implementa-
tion of incremental view maintenance for compilers by map-
ping our pattern matching grammar onto relational queries,
and “bolting on” an existing system for incremental view
maintenance (IVM). Although this specific approach falls
short, it illustrates how IVM relates to the pattern search
problem. To map the AST to a relational encoding, for
each label/schema pair ℓ → ⟨ { 𝑥1, . . . , 𝑥𝑘 } , 𝑐 ⟩ ∈ S, we
define a relation 𝑅ℓ (id, 𝑥1, . . . , 𝑥𝑘 , child1, . . . , child𝑐) with
an id field, and one field per attribute or child. Each node
𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑐]) is assigned a unique identifier id𝑁
and defines a row of relation 𝑅ℓ .〈

id𝑁 , 𝐴(𝑥1), . . . , 𝐴(𝑥𝑘), id𝑁1 , . . . , id𝑁𝑐

〉
3

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

A pattern 𝑞 can be reduced to an equivalent query over
the relational encoding, as shown in Figure 6. A pattern with
𝑘 Match nodes becomes a 𝑘-ary join over the relations 𝑅𝑞
corresponding to the label on each Match node. Each relation
is aliased to its node variable. Join constraints are given by
parent/child relationships, and pattern constraints transfer
directly to the WHERE clause.

Example 3.1. Continuing Example 2.2, the AST nodes are
encoded as relations: Arith(id, op, child1, child2),
Const(id, val), and Var(id, name). The corresponding
pattern match query, following the process in Figure 6 is:

SELECT * FROM Arith a, Const b, Var c

WHERE a.child1 = b.id AND a.child2 = c.id

AND a.op = '+' AND b.val = 0

3.1 Background: Incremental View Maintenance
Materialized views are used in production databases to ac-
celerate query processing. If a view is accessed repeatedly,
database systems materialize the view query 𝑄 by precom-
puting its results𝑄 (𝐷) on the database𝐷 . When the database
changes, the view must be updated to match: Given a set of
changes, Δ𝐷 (e.g., insertions or deletions), a naive approach
would be to simply recompute the view on the updated data-
base 𝑄 (𝐷 + Δ𝐷). However, if Δ𝐷 is small, most of this com-
putation will be redundant. A more efficient approach is to
derive a so-called “delta query” (Δ𝑄) that computes a set of
updates to the (already available) 𝑄 (𝐷). That is, denoting
the view update operation by⇐:

𝑄 (𝐷 + Δ𝐷) ≡ 𝑄 (𝐷) ⇐ Δ𝑄 (𝐷,Δ𝐷)

Example 3.2. Recall 𝑄 (Arith, Const, Var) from the prior
example. After inserting a row 𝑐 into Const, we want:
𝑄 (Arithmetic, Const ⊎ 𝑐, Var)

= Arith ⊲⊳ (Const ⊎ 𝑐) ⊲⊳ Var
= (Arith ⊲⊳ Const ⊲⊳ Var) ⊎ (Arith ⊲⊳ 𝑐 ⊲⊳ Var)
= 𝑄 (Arith, Const, Var) ⊎ (Arith ⊲⊳ 𝑐 ⊲⊳ Var)

Instead of computing the full 3-way join, we can replace 𝑐
with a singleton and compute the cheaper query (Arith ⊲⊳

𝑐 ⊲⊳ Var), and union the result with our original materialzed
view to obtain an updated view.

The joint cost of Δ𝑄 (𝐷,Δ𝐷) and the⇐ operator is gener-
ally lower than re-running the query, significantly improving
overall performance when database updates are small and
infrequent. However, Δ𝑄 can still be expensive. For larger
or more frequent changes, we can further reduce the cost
of computing Δ𝑄 by caching intermediate results. Ross et.
al. [35] proposed a form of cascading IVM that caches every
intermediate result relation in the physical plan of the view
query.

ℓ3

ℓ2

ℓ1

Figure 7. Indexing the AST by Label

Example 3.3. Consider the running example query with
the following execution order:

(Arithmetic ⊲⊳ Var) ⊲⊳ Const

In addition to materializing 𝑄 (·), Ross’ scheme also mate-
rializes the results of 𝑄1 = (Arithmetic ⊲⊳ Var). When 𝑐

is inserted into Const, the update only requires a simple
2-way join 𝑐 ⊲⊳ 𝑄1. However, updates are now (slightly) more
expensive as multiple views may need to be updated.

Ross’ approach of caching intermediate state is analogous
to typical approaches to fixpoint computation (e.g., Differ-
ential Dataflow [27]), but penalizes updates to tables early
in the query plan. With DBToaster [24], Koch et. al. pro-
posed instead materializing all possible query plans. Counter-
intuitively, this added materialization significantly reduces
the cost of view maintenance. Although far more tables need
to be updated with every database change, the updates are
generally small and efficiently computable.

3.2 Bolting DBToaster onto a Compiler
DBToaster [24] in particular is designed for embedded use.
It compiles a set of queries down to a C++ or Scala data
structure that maintains the query results. The data struc-
ture exposes insert, delete, and update operations for each
source relation; and materializes the results of each query
into an iterable collection. One strategy for improving com-
piler performance is to make the minimum changes required
(i.e., “bolt-on”) to allow the compiler to use an incremental
view maintenance data structure generated by DBToaster:

1. The reduction above generates SQL queries for each
pattern-match query used by the optimizer.

2. DBToaster builds a view maintenance data structure.
3. The compiler is instrumented to register changes in

the AST with the view maintenance data structure.
4. Iterative searches in the optimizer for candidate AST

nodes are replaced with a constant-time lookup on the
view maintenance data structure.

As we show in Section 7, this approach significantly out-
performs naive iterative AST scans. Although DBToaster

4

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

requires maintaining supplemental data structures, the over-
head of maintaining these structures is negligible compared
to the benefit of constant-time pattern match results.
Nevertheless, there are three major shortcomings to this

approach. First, DBToaster effectively maintains a shadow
copy of the entire AST — at least the subset that affects
pattern-matching results. Second, DBToaster aggressively
caches intermediate results. For example, our running ex-
ample requires materializing 2 additional view queries, and
this number grows combinatorially with the join width. Fi-
nally, DBToaster-generated view structures register updates
at the granularity of individual node insertions/deletions,
making it impossible for them to take advantage of the fact
that most rewrites follow very structured patterns. For a rel-
atively small number of pattern-matches, the memory use of
the compiler with a DBToaster view structure bolted on, in-
creases by a factor of 2.5×. Given that memory consumption
is already a pain point for large ASTs, this is not viable.
Before addressing these pain points, we first assess why

they arise. First, DBToaster-generated view maintenance
data structures are self-contained. When an insert is reg-
istered, the structure needs to preserve state for later use.
Although unnecessary fields are projected away, this still
amounts to a shadow copy of the AST. Second, DBToster has
a heavy focus on aggregate queries. Caching intermediate
state allows aggressive use of aggregation and selection push-
down into intermediate results, both reducing the amount
of state maintained and the work needed to maintain views.
Both benefits are of limited use in pattern-matching on

ASTs. Pattern matches are SPJ queries, mitigating the value
of aggregate push-down. The value of selection push-down is
mitigated by the AST’s implicit foreign key constraints: each
child has a single parent and each child attribute references
at most one child. Unlike a typical join where a single record
may join with many results, here a single node only partic-
ipates in a single join result3. This also limits the value of
materializing intermediate state for the sake of cache locality
when updating downstream relations.

In summary, for ASTs, the cached state is either redundant
or minimally beneficial. Thus a view maintenance scheme
designed specifically for compilers should be able to achieve
the same benefits, but without the memory overhead.

4 Pattern Matching on a Space Budget
We have a set of patterns 𝑞1, . . . , 𝑞𝑚 and an evolving abstract
syntax tree 𝑁 . Our goal is, given some 𝑞𝑘 , to be able to ob-
tain a single, arbitrary element of the set 𝑞𝑘 (𝑁) as quickly as
possible. Furthermore, this should be possible without signif-
icant overhead as 𝑁 evolves into 𝑁 ′, 𝑁 ′′, and so forth. Recall
that there are three properties that have to hold for a node 𝑁
to match 𝑞: (i) The node and pattern labels must match, (ii)

3To clarify, a node may participate in multiple join results in different
positions in the pattern match, but only in one result at the same position.

Any recursively nested patterns must match, and (iii) The
constraint must hold over the node and its descendants.

4.1 Indexing Labels
A standard first step to query optimization is indexing, for
example with a secondary index on the node labels as illus-
trated in Figure 7. For each node label, the index maintains
pointers to all nodes with that label. Updates to the AST are
propagated into the index. Pattern match queries can use
this index to scan a subset of the AST that includes only
nodes with the appropriate label, as shown in Algorithm 1.

Algorithm 1: IndexLookup(𝑁,𝑞, Index𝑁)
Input: 𝑁 ∈ N , 𝑞 ∈ Q, Index𝑁 : ℓ → { Desc(𝑁) }
Output: 𝑁𝑚𝑎𝑡𝑐ℎ ∈ Desc(𝑁)

1 if 𝑞 = AnyNode then
2 return 𝑁𝑚𝑎𝑡𝑐ℎ ← 𝑁

3 else if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃) then
4 for 𝑁𝑖𝑑𝑥 ∈ Index𝑁 [ℓ] do
5 if 𝑞(𝑁) = T, Γ then
6 return 𝑁𝑚𝑎𝑡𝑐ℎ ← 𝑁𝑖𝑑𝑥

Indexing the AST by node label is simple and has a rela-
tively small memory overhead: approximately 28 bytes per
AST node using the C++ standard library unordered_set.
Similarly, the maintenance overhead is low — one hash table
insert and/or remove per AST node changed.

Example 4.1. To find matches for the rule of Example 2.2,
we retrieve a list of all Arith nodes from the index and itera-
tively check each for a patternmatch. Note that this approach
only supports filtering on labels; Recursive matches and con-
straints both need to be re-checked with each iteration.

4.2 Incremental View Maintenance
While indexing works well for single-node patterns, recur-
sive patterns require a heavier-weight approach. Concretely,
when a node in the AST is updated, we need to figure out
which new pattern matches the update creates, and which
pattern matches it removes. As we saw in Section 3, this
could be accomplished by “joining” the updated node with
all of the other nodes that could participate in the pattern.
However, to compute these joins efficiently, DBToaster and
similar systems need to maintain a significant amount of
supporting state: (i) The view itself, (ii) Intermediate state
needed to evaluate subqueries efficiently (iii) A shadow copy
of the AST. The insight behind TreeToaster is that the latter
two sources of state are unnecessary when the AST is already
available: (i) Subqueries (inter-node joins) reduce to pointer
chasing when the AST is available, and (ii) A shadow copy
of the AST is unnecessary if the IVM system can navigate
the AST directly.

5

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

We begin to outline TreeToaster in Section 5 by defining
IVM for immutable (functional) ASTs. This simplified form
of the IVM problem has a useful property: When a node
is updated, all of its ancestors are updated as well. Thus,
we are guaranteed that the root of a pattern match will be
part of the change set (i.e., Δ𝐷) and can restrict our search
accordingly. We then refine the approach to mutable ASTs,
where only a subset of the tree is updated. Then, in Section 6
we describe how declarative specifications of rewrite rules
can be used to streamline the derivation of update sets and to
eliminate unnecessary checks. Throughout Sections 5 and 6,
we focus on the case of a single pattern query, but note that
this approach generalizes trivially to multiple patterns.

5 AST-Optimized IVM
We first review a generalization of multisets proposed by
Blizard [9] that allows for elements with negative multiplic-
ities. A generalized multiset M : dom(M) → Z maps a set
of elements from a domain dom(M) to an integer-valued
multiplicity. We assume finite-support for all generalized
multisets: only a finite number of elements are mapped to
non-zero multiplicities. Union on a generalized multiset, de-
noted ⊕, is defined by summing multiplicities.

(M1 ⊕M2) (𝑥)
△
= M1 (𝑥) +M2 (𝑥)

Difference, denoted ⊖, is defined analogously:

(M1 ⊖M2) (𝑥)
△
= M1 (𝑥) −M2 (𝑥)

We write 𝑥 ∈ M as a shorthand forM(𝑥) ≠ 0. When combin-
ing sets and generalized multisets, we will abuse notation
and lift sets to the corresponding generalized multiset, where
each of the set’s elements is mapped to the integer 1.
A view View𝑞 is a generalized multiset. We define the

correctness of a view relative to the root of an AST. Without
loss of generality, we assume that any node appears at most
once in any AST.

Definition 4 (View Correctness). A view View𝑞 is correct
for an AST node 𝑁 if the view is the generalized multiset that
maps the subset of Desc(𝑁 ′) that matches 𝑞 to 1, and all other
elements to 0:

View𝑞 = {| 𝑁 ′→ 1 | 𝑁 ′ ∈ 𝑞(𝑁) |}

If we start with a view View𝑞 that is correct for the root
of an AST 𝑁 and rewrite the AST’s root to 𝑁 ′, the view
should update accordingly. We initially assume that we have
available a delta between the two ASTs (i.e., the difference
Desc(𝑁 ′) ⊖ Desc(𝑁)). This delta is generally small for a
rewrite, including only the nodes of the rewritten subtree
and their ancestors. We revisit this assumption in the fol-
lowing section. Algorithm 2 shows a simple algorithm for
maintaining the View𝑞 , given a small change Δ, expressed
as a generalized multiset.

Algorithm 2: IVM(𝑞, View𝑞,Δ)
Input: 𝑞 ∈ Q, View𝑞 ∈ {| N |}, Δ ∈ {| N |}
Output: View′𝑞

1 View′𝑞 ← View𝑞
2 for 𝑁𝑖 ∈ Δ /* nodes with multiplicity ≠ 0 */

3 do
4 if 𝑞(𝑁𝑖) = T, Γ then
5 View′𝑞 ← View′𝑞 ⊕ {| 𝑁𝑖 → Δ(𝑁𝑖) |}

Example 5.1. Consider the AST of Figure 3, which contains
five nodes, and our ongoing example rule. Let us assume
that the left subtree is replaced by Const(0) (e.g., if Var(y)
is resolved to 0). The multiset of the corresponding delta is:

{| (Const, {val ↦→ 0}, []) ↦→ 1, (Arith, {op ↦→ +}, [. . .]) ↦→ 1,
(Const, {val ↦→ 2}, []) ↦→ −1, (Var, {name ↦→ y}, []) ↦→ −1,

(Arith, {op ↦→ ×}, [. . .]) ↦→ −1 |}

Only one of the nodes with nonzero multiplicities matches,
making the update: {| (Arith, {op ↦→ +}, [. . .]) ↦→ 1 |}

For Algorithm 2 to be correct, we need to show that it
computes exactly the update to View𝑞 .

Lemma 5.2 (Correctness of IVM). Given two ASTs 𝑁 and 𝑁 ′

and assuming that View𝑞 is correct for 𝑁 , then the generalized
multiset returned by IVM(𝑞, View𝑞, Desc(𝑁 ′) ⊖ Desc(𝑁)) is
correct for 𝑁 ′.

Proof. Lets denote the generalized multiset returned from
IVM(𝑞, View𝑞, Desc(𝑁 ′) ⊖ Desc(𝑁)) as View

′
𝑞 . To prove that

View𝑞′ is correct we examine the multiplicity of a arbitrary
node 𝑁 ′′.
(i) If 𝑁 ′′ ∈ Desc(𝑁), 𝑁 ′′ ∉ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ T, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = −1

View𝑞 (𝑁 ′′) = 1

View′𝑞 = View𝑞 (𝑁 ′′) ⊕ (Desc(𝑁 ′) ⊖ Desc(𝑁)) (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

(ii) If 𝑁 ′′ ∈ Desc(𝑁), 𝑁 ′′ ∉ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ F, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = −1

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

(iii) If 𝑁 ′′ ∉ Desc(𝑁), 𝑁 ′′ ∈ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ T, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 1

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′) ⊕ (Desc(𝑁 ′) ⊖ Desc(𝑁)) (𝑁 ′′)
= 1

= 𝑞 (𝑁 ′)
6

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

(iv)If 𝑁 ′′ ∉ Desc(𝑁), 𝑁 ′′ ∈ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ F, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 1

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

(v) If 𝑁 ′′ ∈ Desc(𝑁), 𝑁 ′′ ∈ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ T, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 0

View𝑞 (𝑁 ′′) = 1

View′𝑞 = View𝑞 (𝑁 ′′) ⊕ (Desc(𝑁 ′) ⊖ Desc(𝑁)) (𝑁 ′′)
= 1

= 𝑞 (𝑁 ′)

(vi) If 𝑁 ′′ ∈ Desc(𝑁), 𝑁 ′′ ∈ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ F, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 0

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

(vii)If 𝑁 ′′ ∉ Desc(𝑁), 𝑁 ′′ ∉ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ T, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 0

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′) ⊕ (Desc(𝑁 ′) ⊖ Desc(𝑁)) (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

(viii) If 𝑁 ′′ ∉ Desc(𝑁), 𝑁 ′′ ∉ Desc(𝑁 ′) and 𝑞, 𝑁 ′′ ↦→ F, Γ
Desc(𝑁 ′) ⊖ Desc(𝑁) (𝑁 ′′) = 0

View𝑞 (𝑁 ′′) = 0

View′𝑞 = View𝑞 (𝑁 ′′)
= 0

= 𝑞 (𝑁 ′)

Since for all 8 possibilities Algorithm 2 computes correctly
the multiplicity of node 𝑁 ′′ in the resultant of IVM(𝑞, View𝑞,
Desc(𝑁 ′) ⊖Desc(𝑁) as it would be in Desc(𝑁 ′) Algorithm 2
is correct. □

5.1 Mutable Abstract Syntax Trees
Although correct, IVM assumes that the AST is immutable:
When a node changes, each of its ancestors must be updated
to reference the new node as well. Even when TreeToaster
is built into a compiler with immutable ASTs, many of these
pattern matches will be redundant. By lifting this restriction
(if in spirit only), we can decrease the overhead of view
maintenance by reducing the number of nodes that need
to be checked with each AST update. To begin, we create
a notational distinction between the root node 𝑁 and the
node being replaced 𝑅. For clarity of presentation, we again
assume that any node 𝑅 occurs at most once in 𝑁 . 𝑁 [𝑅\𝑅′]

is the node resulting from a replacement of 𝑅 with 𝑅′ in 𝑁 :

𝑁 [𝑅\𝑅′] =


𝑅′ if 𝑁 = 𝑅

(ℓ, 𝐴, [𝑁1 [𝑅\𝑅′], . . . , 𝑁𝑛 [𝑅\𝑅′]])
if 𝑁 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

We also lift this notation to collections:

View [𝑅\𝑅′] = {| 𝑁 [𝑅\𝑅′] → 𝑐 | (𝑁 → 𝑐) ∈ View |}
We emphasize that although this notationmodifies each node
individually, this complexity appears only in the analysis.
The underlying effect being modeled is a single pointer swap.

Example 5.3. The replacement of Example 5.1 is written:

𝑁 [(Arith, {op ↦→ ×}, [. . .]) \ (Const, {val ↦→ 0}, [])]
In the mutable model, the root node itself does not change.

Definition 5 (Pattern Depth). The depth 𝐷 (𝑞) of a pattern 𝑞
is the number of edges along the longest downward path from
root of the pattern to an arbitrary pattern node 𝑞𝑖 .

𝐷 (𝑞) =

0 if 𝑞 = AnyNode

1 +𝑚𝑎𝑥
𝑖∈[𝑛]
(𝐷 (𝑞𝑖)) if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃)

The challenge posed by mutable ASTs is that the modified
node may make one of its ancestors eligible for a pattern-
match. However, as we will show, only a bounded number of
ancestors are required. Denote by Ancestor𝑖 (𝑁) the 𝑖th an-
cestor of 𝑁 4. The maximal search set, which we now define,
includes all nodes that need to be checked for matches.

Definition 6 (Maximal Search Set). Let 𝑅 and 𝑅′ be an ar-
bitrary node in the AST and its replacement. The maximal
search set for 𝑅 and 𝑅′ and pattern 𝑞, ⌈𝑅, 𝑅′⌉𝑞 is the difference
between the generalized multiset of the respective nodes, their
descendents, and their ancestors up to a height of 𝐷 (𝑞).

⌈𝑅, 𝑅′⌉𝑞
△
= Desc(𝑅) ⊕ {| Ancestor𝑖 (𝑅) → 1 | 𝑖 ∈ [𝑛] |}
⊖ Desc(𝑅′) ⊖

{�� Ancestor𝑖 (𝑅′) → 1 | 𝑖 ∈ [𝑛]
��}

Lemma 5.4. Let 𝑁 be the root of an AST, 𝑞 be a pattern, and
𝑅 and 𝑅′ be an arbitrary node in the AST and its replacement.
If View𝑞 is correct for 𝑁 . and View′𝑞 = IVM(𝑞, View𝑞, ⌈𝑅, 𝑅′⌉𝑞),
then View′𝑞 [𝑅\𝑅′] is correct for 𝑁 [𝑅\𝑅′]

Proof. Differs from the proof of Lemma 5.2 in three addi-
tional cases. If 𝑞, 𝑁 ′′ ↦→ ⟨ F, Γ ⟩, then 𝑞(𝑁) = 𝑁 [𝑅\𝑅′] =
View𝑞 = 0. The condition on line 2 is false, and the multi-
plicity is unchanged at 0. Otherwise, if 𝑁 ′′ ∈ Desc(𝑁) then
𝑁 ′′[𝑅\𝑅′] ∈ Desc(𝑁 [𝑅\𝑅′]) by definition. Here, there are
two possibilities: Either N” is within the 𝐷 (𝑞)-high ances-
tors of 𝑅 or not. In the former case, both 𝑁 ′′ and 𝑁 ′′[𝑅\𝑅′]
appear in ⌈𝑅, 𝑅′⌉𝑞 with multiplicities 1 and −1 respectively,
4We note that ASTs do not generally include ancestor pointers. The ancestor
may be derived by maintaining a map of node parents, or by extending the
AST definition with parent pointers.

7

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

and the proof is identical to Lemma 5.2. We prove the lat-
ter case by recursion, by showing that if 𝑁 ′′ is not among
the 𝐷 (𝑞) immediate ancestors and 𝑞, 𝑁 ′′ ↦→ ⟨ 𝑥, Γ ⟩, then
𝑞, 𝑁 ′′[𝑅\𝑅′] does as well. . The base case is a pattern depth
of 0, or𝑞 = AnyNode. This pattern always evaluates to ⟨ T, ∅ ⟩
regardless of input, so the condition is satisfied. For the re-
cursive case, we assume that the property holds for any 𝑞

and 𝑁 ′′′ not among the 𝑑 − 1th ancestors of 𝑅. Since 𝑑 > 1,
𝑅 ≠ 𝑁 ′′ and the precondition for Pattern Rule 2.1 is guar-
anteed to be unchanged. If a pattern has depth 𝑑 , none of
its children have depth more than 𝑑 − 1 so we have for
each of the pattern’s children that if 𝑞𝑖 , 𝑁𝑖 ↦→ ⟨ 𝑥𝑖 , Γ𝑖 ⟩ then
𝑞𝑖 , 𝑁𝑖 [𝑅\𝑅′] ↦→ ⟨ 𝑥𝑖 , Γ𝑖 ⟩, and the preconditions for Pattern
Rules 2.1 and 2.3 are unchanged. Likewise, since both inputs
map to identical gammas and 𝑅 ≠ 𝑁 ′′, the preconditions
for Pattern rule 2.4 are unchanged. Since the preconditions
for all relevant pattern-matching rules are unchanged, the
condition holds at a depth of 𝑑 . □

Example 5.5. The pattern depth of our running example is
1. Continuing the prior example, only the node, its 1-ancestor
(i.e., parent), and the 1-descendents (i.e., children) of the re-
placement node would need to be examined for view updates.

6 Inlining into Rewrite Rules
Algorithm 2 takes the set of changed nodes as an input. In
principle, this information could be obtained by manually in-
strumenting the compiler to record node insertions, updates,
and deletions. However, many rewrite rules are structured:
The rule replaces exactly the matched set of nodes with a
new subtree. Unmodified descendants are re-used as-is, and
with mutable ASTs a subset of the ancestors of the modified
node are re-used as well. TreeToaster provides a declar-
ative language for specifying the output of rewrite rules.
This language serves two purposes. In addition to making it
easier to instrument node changes for TreeToaster, declar-
atively specifying updates opens up several opportunities for
inlining-style optimizations to the view maintenance system.
The declarative node generator grammar follows:

G : Gen(L, atom, G) | Reuse(ΣI)
A Gen term indicates the creation of a new node with the
specified label, attributes, and children. Attribute values are
populated according to a provided attribute scope Γ : ΣI →
Σ𝑀 → D. A Reuse term indicates the re-use of a subtree from
the previous AST, provided by a node scope 𝜇 : ΣI → N .
Node generators are evaluated by the ⟦·⟧Γ,𝜇 : G → N
operator, defined as follows:

⟦𝑔⟧Γ,𝜇 =


𝜇 (𝑖) if 𝑔 = Reuse(𝑖)
(ℓ, {𝑎1 (Γ), . . . , 𝑎𝑘 (Γ)}, ⟦𝑔1⟧Γ,𝜇 , . . . , ⟦𝑔𝑛⟧Γ,𝜇)

if 𝑔 = Gen(ℓ, [𝑎1, . . . , 𝑎𝑘], [𝑔1, . . . , 𝑔𝑛])

A declaratively specified rewrite rule is given by a 2-tuple:
⟨ 𝑞,𝑔 ⟩ ∈ Q × G, a match pattern describing the nodes to
be removed from the tree, and a corresponding generator

describing the nodes to be inserted back into the tree as
replacements. As a simplification for clarity of presentation,
we require that Reuse nodes reference nodes matched by
AnyNode patterns. Define the set of matched node pairs as
the set

pair(𝑞, 𝑅) = { ⟨ 𝑞, 𝑅 ⟩ } ∪ . . .

. . .


{ ⟨ AnyNode, 𝑅 ⟩ } if 𝑞 = AnyNode⋃
𝑘∈[𝑛]

pair(𝑞𝑘 , 𝑁𝑘) if 𝑞 = Match(ℓ, 𝑥, [𝑞1, . . . , 𝑞𝑛], 𝜃)
𝑅 = (ℓ, 𝐴, [𝑁1, . . . , 𝑁𝑛])

A set of generated node pairs pair(𝑔, Γ, 𝜇) is defined analo-
gously relative to the node ⟦𝑔⟧Γ,𝜇

Definition 7 (Safe Generators). Let 𝑁 be an AST root, 𝑞 be
a pattern query, and 𝑅 ∈ 𝑞(𝑁) be a node of the AST matching
the pattern. We call a generator 𝑔 ∈ G safe for ⟨ 𝑞, 𝑅 ⟩ iff 𝑔

reuses exactly the wildcard matches of 𝑞. Formally:

⟨ AnyNode, 𝑁 ⟩ ∈ pair(𝑞, 𝑅) ⇔ ⟨ Reuse(𝑁), 𝑁 ⟩ ∈ pair(𝑔, Γ, 𝜇)

Let 𝑔 ∈ G be a generator that is safe for ⟨𝑚,𝑅 ⟩, where
𝑚 ∈ Q is a pattern. The mutable update delta from 𝑁 to
𝑁 [𝑅\⟦𝑔⟧Γ,𝜇] is:

Δ = {| 𝑁 ′→ 1 | ⟨ 𝑔′, 𝑁 ′ ⟩ ∈ pair(𝑔, Γ, 𝜇) |} ⊖
{| 𝑁 ′→ 1 | ⟨ 𝑞′, 𝑁 ′ ⟩ ∈ pair(𝑚,𝑅) |}

Note that the size of this delta is linear in the size of 𝑔 and𝑚.

6.1 Inlining Optimizations
Up to now, we have assumed that no information about
the nodes in the update delta is available at compile time.
For declarative rewrite rules, we are no longer subject to
this restriction. The labels and structure of the nodes being
removed and those being added are known at compile time.
This allows TreeToaster to generate more efficient code by
eliminating impossible pattern matches.

The process of elimination is outlined for generated nodes
in Algorithm 3. A virtually identical process is used for
matching removed nodes. The algorithm outputs a func-
tion that, given the generated replacement node (i.e., ⟦𝑔⟧Γ,𝜇)
that is not available until runtime, returns the set of nodes
that could match the provided pattern. Matching only hap-
pens by label, as attribute values are also not available until
runtime. If the pattern matches anything or if the node is re-
used (i.e., its label is not known until runtime), the node is a
candidate for pattern match (Lines 1-2). Otherwise, the algo-
rithm proceeds in two stages. It checks if a newly generated
node can be the root of a pattern by recursively descending
through the generator (Lines 3-11). Finally, it checks if any
of the node’s ancestors (up to the depth of the pattern) could
be the root of a pattern match by recursively descending
through the pattern to see if the root of the generated node
could match (Lines 12-13). On lines 5 and 12, Algorithm 3
makes use of a recursive helper function: Align. In the base
case Align0 checks if the input pattern and generator align –

8

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

Algorithm 3: Inline𝑔𝑒𝑛 (𝑞,𝑔)
Input: 𝑞 ∈ Q, 𝑔 ∈ G
Output: 𝑓 : N ↦→ { N }

1 if 𝑞 = AnyNode ∨ 𝑔 = Reuse(𝜇) then
2 𝑓 ′← (𝑁 ↦→ { 𝑁 })
3 else if 𝑞 = Match(ℓ, 𝑖, [𝑞1, . . . , 𝑞𝑛], 𝜃) then
4 𝑔 = Gen(ℓ ′, 𝑖 ′, [𝑔1, . . . , 𝑔𝑛]);
5 if Align0 (𝑞,𝑔) then
6 𝑓 ′′← (𝑁 ↦→ { 𝑁 })
7 else
8 𝑓 ′′← (𝑁 ↦→ ∅)
9 for 𝑖 ∈ [𝑛] do
10 𝑓𝑖 ← Inline𝑔𝑒𝑛 (𝑞,𝑔𝑖)
11 𝑓 ′← (𝑁 ↦→ 𝑓 ′′(𝑁) ∪⋃𝑖∈[𝑛] 𝑓𝑖 (𝑁)
12 A = { 𝑖 | 𝑖 ∈ [𝐷 (𝑞)] ∧ Align𝑖 (𝑞,𝑔) };
13 𝑓 ← (𝑁 ↦→ 𝑓 ′(𝑁) ∪ { Ancestor𝑖 (𝑁) | 𝑖 ∈ A }

whether they have equivalent labels at equivalent positions.

Align0 (𝑞,𝑔) =



T if 𝑞 = AnyNode ∨ 𝑔 = Reuse(𝜇)
F if 𝑞 = Match(ℓ,𝐴, [. . .], 𝜃)

𝑔 = Gen(ℓ′, 𝑖, [. . .]) ∧ ℓ ≠ ℓ′

∀𝑘 : Align0 (𝑞𝑘 , 𝑔𝑘) if 𝑞 = Match(ℓ,𝐴, [. . .], 𝜃)
𝑔 = Gen(ℓ, 𝑖, [. . .])

The recursive case Align𝑑 checks for the existence an align-
ment among the 𝑑th level descendants of the input pattern.

Align𝑑 (𝑞,𝑔) = ∃𝑘 : Align𝑑−1 (𝑞𝑘 , 𝑔)

Example 6.1. Continuing the running example, only the
Var node appears in both the pattern and replacement. Thus,
when a replacement is applied we need only check the parent
of a replaced node for new view updates.

7 Evaluation
To evaluate TreeToaster, we built four IVM mechanisms
into the JustInTimeData [6, 7] compiler, a JIT compiler for
data structures built around a complex AST5. The JustIn-
TimeData compiler naturally works with large ASTs and
requires low latencies, making it a compelling use case. As
such JustInTimeData’s provide an infrastructure to test
TreeToaster. Our tests compare: (i) The JustInTimeData
compiler’s existing Naive iteration-based optimizer, (ii) In-
dexing labels, as proposed in Section 4.1, (iii) Classical in-
cremental view maintenance implemented by bolting on
a view maintenance data structure created by DBToaster
with the –depth=1 flag, (iv) DBToaster’s full recursive view
maintenance bolted onto the compiler, and (v) TreeToaster
(TT)’s view maintenance built into the compiler.

5The full result set of our runs is available at https://github.com/UBOdin/

jitd-synthesis/tree/master/treetoaster_scripts

YCSB Workload A-F

Evaluation Module

AST

View Materialization View Maintenance

View Structure

{Select, Insert, Update}

{Insert(), Remove()} methods

Select 1 in View {Insert, Delete} row

{Naive, Set, Classic
DBT, TreeToaster}

{Set, Classic, DBT,
TreeToaster}

Figure 8. Benchmark Infrastructure

Our experiments confirm the following claims: (i) Tree-
Toaster significantly outperforms JustInTimeData’s naive
iteration-based optimizer, (ii) TreeToaster matches or out-
performs bolt-on IVM systems, while consiming significantly
less memory, (iii) On complex workloads, TreeToaster’s
view maintenance latency is half of bolt-on approaches,

7.1 Workload
To evaluate TreeToaster, we rely on a benchmark workload
created by JustInTimeData [7, 22], an index designed like
a just-in-time compiler. JustInTimeData’s underlying data
structure is modeled after an AST, allowing a JIT runtime
to incrementally and asynchronously rewrite it in the back-
ground using pattern-replacement rules [6] to support more
efficient reads. Data is organized through 5 node types that
closely mimic the building blocks of typical index structures:

(Array, data:Seq[<key:Int,value:Int>], ∅)
(Singleton, data:<key:Int,value:Int>, ∅)
(DeleteSingleton, key:Int, 𝑁1)
(Concat, ∅, 𝑁1, 𝑁2)
(BinTree, sep:Int, 𝑁1, 𝑁2)

JustInTimeData was configured to use five pattern-
replacement rules that mimic Database Cracking [19]
by incrementally building a tree, while pushing updates
(Singleton and DeleteSingleton respectively) down into
the tree.
CrackArray: This rule matches Array nodes and partitions
them on a randomly selected pivot sep ∈ data.

Match(Array, [data], ∅,T) → Gen(BinTree, [sep], [
Gen(Array, [{ 𝑥 | 𝑥 .key < sep }], []),

Gen(Array, [{ 𝑥 | 𝑥 .key ≥ sep }], []),])

PushDownSingletonBtreeLeft/Right: These rules push
Singleton nodes down into BinTree depending on the

9

https://github.com/UBOdin/jitd-synthesis/tree/master/treetoaster_scripts
https://github.com/UBOdin/jitd-synthesis/tree/master/treetoaster_scripts

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

100000

200000

300000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(a)Workload A

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

20000

40000

60000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(b) Workload B

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

5000

10000

15000

20000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(c) Workload C

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

10000

20000

30000

40000

50000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(d)Workload D

 PushDownDontDelete
 SingletonBtreeRight

NaiveIndexClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

NaiveIndexClassicDBT TT
 PushDownSingletonRight

NaiveIndexClassicDBT TT
 PushDownSingletonLeft

NaiveIndexClassicDBT TT
 CrackArray

NaiveIndexClassicDBT TT
0

100000

200000

300000

400000

Se
ar

ch
 L

at
en

cy
(C

PU
 t

ic
ks

)

(e)Workload F

Figure 9. Relative Average Search Technique Performance by Rewrite Rule

10

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

20000

40000

60000

80000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(a)Workload A

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

10000

20000

30000

40000

50000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(b) Workload B

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

10000

20000

30000

40000

50000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

N/A -- Workload C has no delete or singleton operations

(c) Workload C

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

10000

20000

30000

40000

50000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

N/A -- Workload D has no delete operations

(d)Workload D

 PushDownDontDelete
 SingletonBtreeRight

Index ClassicDBT TT
 PushDownDontDelete

 SingeltonBtreeLeft

Index ClassicDBT TT
 PushDown

 SingletonRight

Index ClassicDBT TT
 PushDown

 SingletonLeft

Index ClassicDBT TT
 CrackArray

Index ClassicDBT TT
0

20000

40000

60000

80000

O
pe

ra
ti

on
 la

te
nc

y
(C

PU
 t

ic
ks

)

(e)Workload F

Figure 10. Relative Total Search + Maintenance Cost by Rewrite Rule
11

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

0 2000 4000 6000 8000 10000 12000 14000
Average total latency (search + maintenance)

0

10000

20000

30000

40000

50000

60000

70000

80000
Av

er
ag

e
m

em
or

y
pa

ge
s

al
lo

ca
te

d
Naive
Index
Classic
DBT
TT

Workload A
Workload B
Workload C
Workload D
Workload F

Figure 11. Total Latency (search cost + maintenance opera-
tions) and Memory Use, by method and node type

0

50000

100000

150000

200000

 Workload A

Index
Classic

DBT
TT

 Workload B

Index
Classic

DBT
TT

 Workload C

Index
Classic

DBT
TT

 Workload D

Index
Classic

DBT
TT

 Workload F

Index
Classic

DBT
TT

Maintenance type and workload

0

2500

5000

7500

10000

Av
er

ag
e

la
te

nc
y

(C
PU

 t
ic

ks
)

Figure 12. Average IVM Operational Latency. The bottom
plot is a zoomed-in view of the top plot.

separator.
Match(Concat,𝐶, [Match(BinTree, 𝐵, 𝑞1, 𝑞2, ∅),

Match(Singleton, 𝑆, ∅, ∅)], 𝑆 .key < sep) →
Gen(BinTree, [sep], [Gen(Concat, [], [

Reuse(𝑞1), Reuse(𝑆),]), Reuse(𝑞2),])
PushDownSingletonBtreeRight is defined analogously.
PushDownDeleteSingletonBtreeLeft/Right: These
rules push DeleteSingleton nodes depending on the
separator and are defined analogously to PushDownSingle-
tonBtreeLeft.
Although these rewrite rules appear relatively simple,

their pattern structures are representative of the vast major-
ity of optimizer in both Apache Spark [4] and Orca [37]. A
detailed discussion of these rules and how they relate to the

example patterns is provided in an accompanying technical
report [5].

7.2 Data Gathering and Measurement
We instrumented JustInTimeData to collect updates to
AST nodes as allocation (insert()) and garbage collection
(remove()) operations. To vary the distribution of optimiza-
tion opportunities we used the six baseline YCSB [14] bench-
mark workloads as input to JustInTimeData. Each work-
load exercises a different set of node operations, resulting in
ASTs composed of different node structures, patterns, and
the applicability of different rewrite rules. We built a testing
module in C++, allowing us to replace JustInTimeData’s
naive tree traversal with the view maintenance schemes de-
scribed above for an apples-to-apples comparison. Figure 8
illustrates the benchmark generation process.

Views for TreeToaster and label indexingwere generated
by declarative specification as described in Section 6 and
views for DBToaster were generated by hand, translating
rules to equivalent SQL as described in Section 2.

We instrumented TreeToaster to collect in-structure in-
formation pertaining to view materialization and mainte-
nance: the time to identify potential JustInTimeData trans-
form operations (rows in the materialized views), and the
time to maintain the views in response to updates. The test
harness also records database operation latency and process
memory usage, as reported by the Linux /proc interface. To
summarize, we measure performance along three axes: (i)
Time spent finding a pattern match, (ii) Time spent maintain-
ing support structures (if any), and (iii) Memory allocated.

7.3 Evaluation
JustInTimeData is configured to use 5 representative
rewrite rules listed above. Detailed results are grouped by
the triggering rule. Each combination was run 10 times, with
the search and operation results aggregated. Experiments
were run on Ubuntu 16.04.06 LTS with 192GB RAM and 24
core Xeon 2.50GHz processors. All the results are obtained
from the instrumented JustInTimeData compiler run on
YCSB workloads with 300M keys.

7.4 Results
We first evaluate how IVM performs relative to other meth-
ods of IVM in identifying target nodes in tree structure. We
compare the latency in identifying potential nodes (i.e. ma-
terializing views) using the 5 IVM methods.
Figure 9 shows there were 5 sets of views one per trans-

form (e.g. CrackArray) that were materialized, representing
target nodes in the underlying tree structure. The 5 boxplot
clusters compare the relative average latency of identifying
1 such node, using each of 5 identification methods. In each
case, the naive search approach exhibits the worst perfor-
mance. The label index approach also yields worse results

12

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

 Workload A

Index
Classic

DBT
TT

 Workload B

Index
Classic

DBT
TT

 Workload C

Index
Classic

DBT
TT

 Workload D

Index
Classic

DBT
TT

 Workload F

Index
Classic

DBT
TT

Maintenance type and workload

0

20000

40000

60000

80000

100000

Av
er

ag
e

m
em

or
y

pa
ge

s
al

lo
ca

te
d

Figure 13. Average Process Memory Usage Summary.

than either of the IVM approaches. For identifying target
nodes, we conclude that an IVM approach performs better.

We compare TreeToaster to IVM alternatives, including
label indexing as well as a classic IVM system and a hash-
based IVM implemented using DBToaster. Figure 11 shows
for each system, the graph shows both memory and overall
performance, in terms of the combined access latency and
search costs per optimizer iteration.1 TreeToaster easily
outperforms naive iteration and has an advantage over the
label index, with only a slight memory penalty relative to
the former. It slightly outperforms DBToaster in general,
but the total system memory for TreeToaster is less than
half of DBToaster.

Figure 10 shows the average total latency spent searching
for a target node for a JustInTimeData reorganization step,
plus all maintenance steps in the reorganization, for each
of the 4 IVM target node identification methods. While the
label-index approach performs well on workloads where the
structure is allowed to converge (loads B and D) it scales
poorly under increased pressure (update heavy loads A and
F). Average total time was significantly worse than that of
TreeToaster. In terms of total cost, TreeToaster outper-
forms both classic IVM and DBToaster IVM.

Finally, Figure 13 shows the average memory use in pages.
For all the methods, the memory footprint was a relatively
stable constant within each run, with only small inter-run
variance. Comparing acrossmaterialization andmaintenance
methods, both classic IVM and DBToaster exhibited sig-
nificantly greater memory consumption, an expected result
due to its strategy of maintaining large pre-computed tables.
Despite using significantly less memory to optimize perfor-
mance, TreeToaster performs as well as if not significantly
better than these 2 alternatives. Figure 12 shows an aggre-
gate summary of all workloads. Overall, TreeToaster offers
both better memory and latency across all alternatives.

8 Related Work
TreeToaster builds on decades of work in Incremental View
Maintenance (IVM)— See [13] for a survey. The area has been
extensively studied, with techniques developed for incremen-
tal maintenance support for of a wide range of data mod-
els [8, 12, 35, 42] and query language features [20, 23, 26, 33].

Notable are techniques that improve performance through
dynamic programming [24, 27, 35, 43]. A common approach
is materializing intermediate results; For one plan as pro-
posed by Ross et. al. [35], or all possible plans as proposed
by Koch et. al [24]. A key feature of both approaches is
computing the mininmal update – or slice – of the query
result, an idea core to systems like Differential Dataflow [27].
Both approaches show significant performance gains on gen-
eral queries. However, the sources of these gains: selection-
pushdown, aggregate-pushdown, and cache locality are less
relevant in the context of abstract syntax trees. Similarly-
spirited approaches can be found in other contexts, including
graphical inference [43], and fixed point computations [27].
Also relevant is the idea of embedding query processing

logic into a compiled application [2, 18, 24, 28, 30, 32, 34, 36].
Systems like BerkeleyDB, SQLite, and DuckDB embed full
query processing logic, while systems like DBToaster [2, 24,
30] and LinQ [28] compile queries along with the application,
making it possible to generate native code optimized for the
application. Most notably, this makes it possible to aggres-
sively inline SQL and imperative logic, often avoiding the
need for boxing, expensive VM transitions for user-defined
functions, and more [28, 36, 41]. Major database engines
have also recently been extended to compile queries to na-
tive code [11, 15, 29], albeit at query compile time.
To our knowledge, IVM over Abstract Syntax Trees has

not been studied directly. The Cascades framework [17] con-
siders streamlined approaches to scheduling rule applica-
tion, a strategy that is used by the Orca [37] compiler. IVM
approaches also exist for general tree and graph query lan-
guages and data models like XPath [16], Cypher [38, 39], and
the Nested Relational Calculus [25]. These schemes address
recursion, with which join widths are no longer bounded;
and aggregates without an abelian group representation (e.g.,
min/max), where deletions are more challenging.
However, two approaches aimed at the object exchange

model [1, 44], are very closely related to our own approach.
One approach proposed by Abiteboul et. al. [1] first deter-
mines the potential positions at which an update could affect
a view and then uses the update to recompute the remain-
ing query fragments. However, its more expressive query
language limits optimization opportunities, creating situa-
tions where it may be faster to simply recompute the view
query from scratch. The other approach proposed by Zhuge
and Molina [44] follows a similar model to our immutable
IVM scheme, enforcing pattern matches on ancestors by
recursively triggering shadow updates to all ancestors.

13

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

9 Conclusion and Future Work
In this paper we introduce a formalized mechanism for
pattern-matching queries over ASTs and IVM over such
queries. Our realization of the theory in the just-in-time
data-structure compiler shows that the TreeToaster ap-
proach works.
Many compilers choose to specify rewrites over the AST

as pattern match rules, whether declaratively through lan-
guage features (e.g., Spark), or a customized implementation
of the same (e.g., Orca). We would like to extend our work,
integrating it with language-based pattern matching to auto-
mate the matching process. For example, a DSL implemented
with Scala macros could extract declarative pattern matches,
plug them into our grammar, and provide a nearly drop-in
replacement for its existing optimizer infrastructure. We
also plan on extending our approach to work with graphs.
This will allow for recursive pattern matches and efficient
IVM over graph structures. This is particularly interesting for
traditional compilers as there exist many optimizations that
rely on fixed-points while traversing control-flow graphs.

Acknowledgments
This work is supported by NSF grants: SHF-1749539, IIS-
1617586, and IIS-1750460. All opinions presented are those
of the authors. The authors wish to thank the reviewers and
shepherd for their substantial contributions.

References
[1] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and

Janet L.Wiener. 1998. Incremental Maintenance forMaterialized Views
over Semistructured Data. In VLDB. Morgan Kaufmann, 38–49.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, andMilos Nikolic. 2012.
Dbtoaster: Higher-order delta processing for dynamic, frequently fresh
views. arXiv preprint arXiv:1207.0137 (2012).

[3] Bahareh Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, and Qitian
Zeng. 2018. GProM - A Swiss Army Knife for Your Provenance Needs.
IEEE Data Engineering Bulletin 41, 1 (2018), 51–62.

[4] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin,
Ali Ghodsi, and Matei Zaharia. 2015. Spark SQL: Relational Data
Processing in Spark. In SIGMOD Conference. ACM, 1383–1394.

[5] Darshana Balakrishnan, Carl Nuessle, Oliver Kennedy, and Lukasz
Ziarek. 2021. TreeToaster: Towards an IVM-Optimized Compiler. UB
CSE Technical Report (2021). http://www.cse.buffalo.edu/tech-reports/

2021-01.pdf

[6] Darshana Balakrishnan, Lukasz Ziarek, and Oliver Kennedy. 2019.
Fluid data structures. In DBPL. ACM, 3–17.

[7] Darshana Balakrishnan, Lukasz Ziarek, and Oliver Kennedy. 2019. Just-
in-Time Index Compilation. arXiv preprint arXiv:1901.07627 (2019).

[8] José A. Blakeley, Per-Åke Larson, and Frank Wm. Tompa. 1986. Ef-
ficiently Updating Materialized Views. In SIGMOD Conference. ACM
Press, 61–71.

[9] Wayne D. Blizard. 1990. Negative Membership. Notre Dame J. Formal
Log. 31, 3 (1990), 346–368.

[10] Michael Brachmann, William Spoth, Oliver Kennedy, Boris Glavic,
Heiko Mueller, Sonia Castelo, Carlos Bautista, and Juliana Freire. 2020.
Your notebook is not crumby enough, REPLace it. In CIDR.

[11] Dennis Butterstein and Torsten Grust. 2016. Precision Performance
Surgery for PostgreSQL: LLVM-based Expression Compilation, Just in
Time. Proc. VLDB Endow. 9, 13 (2016), 1517–1520.

[12] Surajit Chaudhuri, Ravi Krishnamurthy, Spyros Potamianos, and
Kyuseok Shim. 1995. Optimizing Queries with Materialized Views. In
ICDE. IEEE Computer Society, 190–200.

[13] Latha S. Colby, Timothy Griffin, Leonid Libkin, Inderpal SinghMumick,
andHoward Trickey. 1996. Algorithms for Deferred ViewMaintenance.
In SIGMOD Conference. ACM Press, 469–480.

[14] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM symposium on Cloud computing.
143–154.

[15] Databricks. 2015. Project Tungsten.
https://databricks.com/glossary/tungsten. (2015).

[16] Katica Dimitrova, Maged El-Sayed, and Elke A. Rundensteiner. 2003.
Order-Sensitive View Maintenance of Materialized XQuery Views. In
ER (Lecture Notes in Computer Science, Vol. 2813). Springer, 144–157.

[17] Goetz Graefe. 1995. The Cascades Framework for Query Optimization.
IEEE Data Eng. Bull. 18, 3 (1995), 19–29.

[18] D. Richard Hipp. 2000. SQLite: Small. Fast. Reliable. Choose any three.
https://sqlite.org/.

[19] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. 2007. Database
Cracking. In CIDR. www.cidrdb.org, 68–78.

[20] Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Mumick, and
Kenneth A. Ross. 1997. Implementing Incremental View Maintenance
in Nested Data Models. In DBPL (Lecture Notes in Computer Science,
Vol. 1369). Springer, 202–221.

[21] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures.
In CIDR. www.cidrdb.org.

[22] Oliver Kennedy and Lukasz Ziarek. 2015. Just-In-Time Data Structures..
In CIDR. Citeseer.

[23] Christoph Koch. 2010. Incremental query evaluation in a ring of
databases. In PODS. ACM, 87–98.

[24] Christoph Koch, Yanif Ahmad, Oliver Kennedy, Milos Nikolic, Andres
Nötzli, Daniel Lupei, and Amir Shaikhha. 2014. DBToaster: higher-
order delta processing for dynamic, frequently fresh views. VLDB J.
23, 2 (2014), 253–278.

[25] Christoph Koch, Daniel Lupei, and Val Tannen. 2016. Incremental View
Maintenance For Collection Programming. In PODS. ACM, 75–90.

[26] Per-Åke Larson and Jingren Zhou. 2007. Efficient Maintenance of
Materialized Outer-Join Views. In ICDE. IEEE Computer Society, 56–
65.

[27] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael
Isard. 2013. Differential Dataflow. In CIDR. www.cidrdb.org.

[28] Erik Meijer, Brian Beckman, and Gavin M. Bierman. 2006. LINQ: rec-
onciling object, relations and XML in the .NET framework. In SIGMOD
Conference. ACM, 706.

[29] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans
for Modern Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[30] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to
Win a Hot Dog Eating Contest: Distributed Incremental View Mainte-
nance with Batch Updates. In SIGMOD Conference. ACM, 511–526.

[31] Patrick E. O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth J.
O’Neil. 1996. The Log-Structured Merge-Tree (LSM-Tree). Acta Infor-
matica 33, 4 (1996), 351–385.

[32] Oracle. 1994. Oracle BerkeleyDB.
https://www.oracle.com/database/berkeley-db/.

[33] Themistoklis Palpanas, Richard Sidle, Roberta Cochrane, and Hamid
Pirahesh. 2002. Incremental Maintenance for Non-Distributive Aggre-
gate Functions. In VLDB. Morgan Kaufmann, 802–813.

[34] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable
Analytical Database. In SIGMOD Conference. ACM, 1981–1984.

14

http://www.cse.buffalo.edu/tech-reports/2021-01.pdf
http://www.cse.buffalo.edu/tech-reports/2021-01.pdf

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

[35] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. 1996. Material-
ized View Maintenance and Integrity Constraint Checking: Trading
Space for Time. In SIGMOD Conference. ACM Press, 447–458.

[36] Amir Shaikhha. 2013. An Embedded Query Language in Scala. http:

//infoscience.epfl.ch/record/213124

[37] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr
El-Helw, Zhongxian Gu, Entong Shen, George C. Caragea, Carlos
Garcia-Alvarado, Foyzur Rahman, Michalis Petropoulos, Florian Waas,
Sivaramakrishnan Narayanan, Konstantinos Krikellas, and Rhonda
Baldwin. 2014. Orca: a modular query optimizer architecture for big
data. In SIGMOD Conference. ACM, 337–348.

[38] Gábor Szárnyas. 2018. Incremental View Maintenance for Property
Graph Queries. In SIGMOD Conference. ACM, 1843–1845.

[39] Gábor Szárnyas, József Marton, János Maginecz, and Dániel Varró.
2018. Reducing Property Graph Queries to Relational Algebra for

Incremental View Maintenance. CoRR abs/1806.07344 (2018).
[40] The Transaction Processing Performance Council. [n.d.]. The TPC-H

Benchmark. http://www.tpc.org/tpch/.
[41] ThomasWürthinger. 2014. Graal and truffle:modularity and separation

of concerns as cornerstones for building a multipurpose runtime. In
MODULARITY. ACM, 3–4.

[42] Jun Yang and Jennifer Widom. 2003. Incremental computation and
maintenance of temporal aggregates. VLDB J. 12, 3 (2003), 262–283.

[43] Ying Yang and Oliver Kennedy. 2017. Convergent Interactive Inference
with Leaky Joins. In EDBT. OpenProceedings.org, 366–377.

[44] Yue Zhuge and Hector Garcia-Molina. 1998. Graph Structured Views
and Their Incremental Maintenance. In ICDE. IEEE Computer Society,
116–125.

15

http://infoscience.epfl.ch/record/213124
http://infoscience.epfl.ch/record/213124

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

1 2 3 4 5 6 7 8
Log(AST Size)

100

101

102

103
T
im

e
 (

se
c)

Total Search Time
Total Time Rewrite

(a) Spark: Total time spent in rewrite

0 1 2 3 4 5 6 7 8
Log(AST Size)

0

10

20

30

40

50

60

P
e
rc

e
n
ta

g
e
 T

im
e
 S

p
e
n
t

in
 S

e
a
rc

h

(b) Spark: Percentage time in AST search.

Figure 14. Rewrite and Search Times for Spark’s Optimizer

A Exploration of Spark and ORCA
In this section we present a thorough exploration of Spark’s
Catalyst optimizer and Greenplum’s Orca. We have stud-
ied two open source SQL optimizers with an eye towards
understanding how much of a time sink AST searches are.
To accomplish this we used a simple, easily scalable query
pattern:
CREATE VIEW TABLE_[N] AS

SELECT * FROM (

SELECT * FROM TABLE_[N-1]

UNION ALL SELECT * FROM TABLE_[N-1]

) a,

SELECT * FROM (

SELECT * FROM TABLE_[N-1]

UNION ALL SELECT * FROM TABLE_[N-1]

) b,

WHERE a.attr = b.attr

This query structure is representative of an antipattern that
arises naturally in query rewriting for provenance-tracking
(e.g., [3, 10]), and that such compilers must explicitly guard
against. Results appear below in Figures 14a, 14b, 15a and 15b.
Spark results shown are the average of 5 runs. Orca timings

were noisier, so we take the average of 10 runs. Spark’s
optimizer works through Scala’s native pattern matching
syntax (a recursive match { case } blocks, or more precisely
calls to Spark’s transform { case } utility function). We
obtained these timings by logging the time spent in each
state i.e, serach for a pattern and apply a pattern. Orca’s
compiler has a more intricate rule scheduling mechanism,
but also works by recursive tree traversal during which a
pairwise recursive traversal of the pattern AST and AST
subtrees is used to check for matches. We measure the time
taken in this match and contrast.

Take-away: Both Catalyst and Orca as seen in Figures 14b
and 15b spend a non-negligible fraction of their optimization
time searching for candidate AST nodes to rewrite (50-60%
for Spark, 5-20% for Orca). In both cases, the relative fraction
of time spent searching drops asymptotically (to about 50%,
5% respectively) as the AST size grows, but continues scal-
ing linearly with the AST size Figures 14a and 15a. These
results suggest that (i) At small scales, pattern-matching is
a dominant cost for query optimization, and (ii) Any com-
prehensive strategy that will allow optimizers to scale to
enormous ASTs will need to include a technique analogous
to TreeToaster.

B JITD Compiler, Spark and ORCA
We did a thorough assessment of optimizer rules in Catalyst
and ORCA, and found that most of the rules were comparable
to, if not strict subsets of the rules used in the JustInTime-
Data compiler we were evaluating — and all of these rules
are local patterns. We first represent Spark and ORCA AST
Nodes with our grammar in Appendix C and present a de-
tailed overview of our assessment results in Appendices D
and E.

C Spark and ORCA AST Schemas
This subsection defines a simplified schema (in terms of
the node’s attributes and children) for nodes in Spark’s
LogicalPlan AST and ORCA’s CExpression AST. Because
all nodes in Spark share common attributes, we also allow
pattern matching on a node with a variable label ℓ :

(ℓ, [o:Seq[Attribute],r:AttributeSet,. . .], 𝑁)

D Spark Transforms
Scala’s optimizer makes extensive use of LogicalPlan’s
transform method (among several variants), which does
a pattern-matching search and replaces AST nodes based
on a Scala pattern match (a case clause). In the following,
we provide (i) the case clauses, (ii) The corresponding pat-
tern matching expression in our grammar, and (iii) The most
similar transform.

16

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

0 1 2 3 4 5
Log(AST Size)

100

101

102

103

104

T
im

e
 (

se
c)

Total Time
Total Time Search

(a) Orca: Total time spent in rewrite

0 1 2 3 4 5
Log(AST Size)

0

10

20

30

40

50

60

P
e
rc

e
n
ta

g
e
 T

im
e
 S

p
e
n
t

in
 S

e
a
rc

h

(b) Orca: Percentage time in AST search.

Figure 15. Rewrite and Search Times for Spark’s Optimizer

D.1 Transform: RemoveNoopOperators
Scala:
case p : Project(_, child) if child.sameOutput(p)

case w: Window if w.windowExpressions.isEmpty

Patterns:
Match(Project, [o1,r,p], Match(ℓ, [o2,. . .], 𝑄,T),

o1 = o2)
Match(Window, [o,r,w,ps,so], 𝑞1, w.empty)

Most Similar JITD Pattern: DeleteSingletonFromArray

D.2 Transform: CombineFilters
Scala:
case Filter(fc , nf : Filter(nc, grandChild))

if fc.deterministic && nc.deterministic

Patterns:
Match(Filter, [o1,r1,c1],

Match(Filter, [o2,r2,c2], 𝑞1, c2.deterministic),
c1.deterministic)

Most Similar JITD Pattern: MergeSortedCon-
cat,PushDownDowntDeleteSingletonLeft/Right

D.3 Transform: PushPredicateThroughNonJoin
Scala:
case Filter(condition , project :

Project(fields ,grandChild))

if fields.forall(_.deterministic) &&

canPushThroughCondition(grandChild ,

condition)

case filter : Filter(condition ,

aggregate: Aggregate)

if aggregate.aggregateExpressions.forall(

_.deterministic) &&

aggregate.groupingExpressions.nonEmpty

case filter : Filter(condition , w: Window)

if w.partitionSpec.forall(

_.isInstanceOf[AttributeReference])

case filter : Filter(condition , union: Union)

case filter : Filter(condition , watermark:

EventTimeWatermark)

case filter : Filter(_, u: UnaryNode)

if canPushThrough(u) && u.expressions.forall(

_.deterministic)

def canPushThrough(p: UnaryNode): Boolean =

p match {

case _: AppendColumns => true

case _: Distinct => true

case _: Generate => true

case _: Pivot => true

case _: RepartitionByExpression => true

case _: Repartition => true

case _: ScriptTransformation => true

case _: Sort => true

case _: BatchEvalPython => true

case _: ArrowEvalPython => true

case _: Expand => true

case _ => false

}

Patterns:
Match(Filter, [o1,r1,c], Match(Project, [o2,r2,p],

Match(ℓ, [o3,r3,. . .], 𝑄,T),
p.deterministic),
canPushThroughCondition(c,
Match(ℓ, [o3,r3,. . .], 𝑄,T)))

Match(Filter, [o1,r1,c],
Match(Aggregate, [o2,r2,g,a], 𝑞1,T),
[a.deterministic,g.empty])

Match(Filter, [o1,r1,c],
Match(Window, [o2,r2,w,ps,so], 𝑞1,

ps.isInstanceOf[AttributeReference]),T)
Match(Filter, [o1,r1,c],

Match(Union, [o2,r2,p,a],
[𝑞1 . . . 𝑞𝑛],T),T)

Match(Filter, [o1,r1,c],
17

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

SubqueryExpr {[o:Seq[Attribute],r:AttributeSet ,ce:Seq[Expression],e𝑖𝑑 :ExprId]}{𝑁1}

UnaryNode {[o:Seq[Attribute],r:AttributeSet ,e: Seq[Expression ,..]}{𝑁1}

Project {[o:Seq[Attribute],r:AttributeSet ,p:Seq[NamedExpr]]}{𝑁1}

Window {[o:Seq[Attribute],r:AttributeSet ,w:Seq[NamedExpr],ps:Seq[Expr] ,...]}{𝑁1}

Filter {[o:Seq[Attribute],r:AttributeSet ,c:Expression]}{𝑁1}

Aggregate {[o:Seq[Attribute],r:AttributeSet ,g:Seq[Expr],a:Seq[NamedExpr]]}{𝑁1}

Union{[o:Seq[Attribute],r:AttributeSet ,p:Bool ,a:Bool]}{ [𝑁1 . . . 𝑁𝑛]}
WaterMark {[o:Seq[Attribute],r:AttributeSet ,e:EventTime ,d:Delay]]}{𝑁1}

Join{[o:Seq[Attribute],r:AttributeSet ,j:JoinType ,c:Expression ,h:JoinHint]}{𝑁1,𝑁2}

Expand {[o:Seq[Attribute],r:AttributeSet ,p:Seq[Seq[Expr]],op:Seq[Attribute]]}{𝑁1}

Deserialize {[o:Seq[Attribute],r:AttributeSet ,e:Expr ,a:Attr]}{𝑁1}

FlatMap {[o:Seq[Attribute],r:AttributeSet ,e:Expr ,a:Attr]}{𝑁1}

ScriptTransf {[o:Seq[Attribute],r:AttributeSet ,i:Seq[Expr],s:String ,...]}{𝑁1}

Distinct {[o:Seq[Attribute],r:AttributeSet]}{𝑁1}

Generate {[o:Seq[Attribute],r:AttributeSet ,g: Generator , u: Seq[Int], ...]}{𝑁1}

SetOp{[o:Seq[Attribute],r:AttributeSet]}{𝑁1,𝑁2}

Subquery {[o:Seq[Attribute],r:AttributeSet ,c:Bool]}{𝑁1}

Limit{[o:Seq[Attribute],r:AttributeSet ,c:Expression]}{𝑁1}

LocalRel {[o:Seq[Attribute],r:AttributeSet ,op:Seq[Attribute] ,...]}{}

Repartion {[o:Seq[Attribute],r:AttributeSet ,n:Int ,s:Bool]}{𝑁1}

GlobalLimit {[o:Seq[Attribute],r:AttributeSet ,g:Expr]]}{𝑁1}

LocalLimit {[o:Seq[Attribute],r:AttributeSet ,l:Expr]]}{𝑁1}

Sample {[o:Seq[Attribute],r:AttributeSet ,l: Double , u: Double , w: Bool , ...]}{𝑁1}

Figure 16. A selection of Spark’s LogicalPlan node types expressed as schemas for G

CLogicalNAryJoin {[exprhdl:CExpressionHandle ,p:childPredicateList]}{𝑁 }

CLogicalGet {[exprhdl:CExpressionHandle ,t:CName ,pt:CTableDescriptor ,...]}{∅}
CLogicalSelect {[exprhdl:CExpressionHandle ,m:CHashMapExpr2Expr ,

pt:CTableDescriptor ,predicateExpr:CExpression]}{𝑁1}

CLogicalInnerJoin

{[exprhdl:CExpressionHandle ,predicateExpr:CExpression]}{𝑁1,𝑁2}

CLogicalUnionAll

{[exprhdl:CExpressionHandle ,i:Int ,o:CColRefArray ,k:CColRef2dArray]}{𝑁 }

Figure 17. A selection of Orca’s AST node types expressed as schemas for G

Match(WaterMark, [o2,r2,e,d],
𝑞1,T),T)

Match(Filter, [o1,r1,c],
Match(UnaryNode, [o2,r2,e,. . .], 𝑞1,

[e.deterministic,canPushThrough(u)]),T)

Most Similar JITD Pattern:MergeUnSortedConcatArray,
PushDownDontDeleteSingletonLeft/Right

D.4 Transform: PushPredicateThroughJoin
Scala:
case f : Filter(filterCondition ,

Join(left , right , joinType ,

joinCondition , hint))

if canPushThrough(joinType)

case j : Join(left , right , joinType ,

joinCondition , hint)

if canPushThrough(joinType)

private def canPushThrough(joinType: JoinType):

Boolean = joinType match {

case _: InnerLike | LeftSemi |

RightOuter | LeftOuter | LeftAnti |

ExistenceJoin(_) => true

case _ => false

}

18

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

Patterns:
Match(Filter, [o1,r1,c1],

Match(Join, [o2,r2,j,c2,h], 𝑞1, 𝑞2,
canPushThrough(j)),T)

Match(Join, [o,r,j,c,h], 𝑞1, 𝑞2, canPushThrough(j))
Most Similar JITD Pattern: PushDownAndCrack, Merge-
SortedBTrees

D.5 Transform: ColumnPruning
Scala:
case p : Project(_, p2: Project)

if !p2.outputSet.subsetOf(p.references)

case p : Project(_, a: Aggregate)

if !a.outputSet.subsetOf(p.references)

case a : Project(_, e : Expand(_, _, grandChild))

if !e.outputSet.subsetOf(a.references)

case d : DeserializeToObject(_, _, child)

if !child.outputSet.subsetOf(d.references)

case a : Aggregate(_, _, child)

if !child.outputSet.subsetOf(a.references)

case f : FlatMapGroupsInPandas(_, _, _, child)

if !child.outputSet.subsetOf(f.references)

case e : Expand(_, _, child)

if !child.outputSet.subsetOf(e.references)

case s : ScriptTransformation(_, _, _, child , _)

if !child.outputSet.subsetOf(s.references)

case p : Project(_, g: Generate)

if p.references ≠ g.outputSet

case j : Join(_, right , LeftExistence(_), _, _)

case p : Project(_, _: SetOperation)

case p : Project(_, _: Distinct)

case p : Project(_, u: Union)

case p : Project(_, w: Window)

if

!w.windowOutputSet.subsetOf(p.references)

case p : Project(_, _: LeafNode)

case p : Project(_, child)

if !child.isInstanceOf[Project]

case GeneratorNestedColumnAliasing(p)

case NestedColumnAliasing(p)

Patterns:
Match(Project, [o1,r1,p1],

Match(Project, [o2,r2,p2], 𝑞1,T), o2 ⊆ r1)
Match(Project, [o1,r1,p1],

Match(Aggregate, [o2,r2,g,a], 𝑞1,T),
o2 ⊆ r1)

Match(Project, [o1,r1,p1],
Match(Expand, [o2,r2,p2,op], 𝑞1,T),
o2 ⊆ r1)

Match(Deserialize, [o1,r1,e,a],
Match(ℓ, [o2,r2,. . .], 𝑄,T), o2 ⊆ r1)

Match(Aggregate, [o1,r1,g,a],
Match(ℓ, [o2,r2,. . .], 𝑄,T), o2 ⊆ r1)

Match(FlatMap, [o1,r1,e,a],
Match(ℓ, [o2,r2,. . .], 𝑄,T), o2 ⊆ r1)

Match(Expand, [o1,r1,p,o],

Match(ℓ, [o2,r2,. . .], 𝑄,T), o2 ⊆ r1)
Match(ScriptTransf, [o1,r1,i,s,op,io],

Match(ℓ, [o2,r2,. . .], 𝑄,T), o2 ⊆ r1)
Match(Project, [o1,r2,p],

Match(Generate, [o2,r2,g,u,ob,q,go],
𝑞1,T), r1 ≠ o2)

Match(Join, [o,r,j,c,h:leftExistence], 𝑞1, 𝑞2,T)
Match(Project, [o1,r1,p],

Match(SetOp, [o2,r2], 𝑞1, 𝑞2,T),T)
Match(Project, [o1,r1,p],

Match(Distinct, [o2,r1], 𝑞1,T),T)
Match(Project, [o1,r1,p1],

Match(Union, [o2,r2,p2,a],
[𝑞1 . . . 𝑞𝑛],T),T)

Match(Project, [o1,r1,p1],
Match(Window, [o2,r2,w,p2], 𝑞1,T),
o2 ⊆ r2)

Match(Project, [o1,r1,p1],
Match(ℓ, [o2,r2,. . .], ∅,T),T)

Match(Project, [o1,r1,p1],
Match(Project, [o2,r2,p2], 𝑞1,T),T)

Match(Project, [o1,r1,p1], 𝑁1,T)
Match(Generate, [o2,r2,g,u,ob,q,go], 𝑞1,T)
Most Similar JITD Pattern: MergeConcatNodes

D.6 Transform: RewritePredicateSubquery
Scala:
case Filter(condition , child)

Patterns:
Match(Filter, [o,r,c], 𝑞1,T)
Most Similar JITD Pattern: DeleteSingletonFromArray

D.7 Transform: RemoveRedundantAliases
Scala:
case Subquery(child , correlated)

case Join(left , right , joinType , condition , hint)

Patterns:
Match(Subquery, [o,r,c], 𝑞1,T)
Match(Join, [o,r,j,c,h], 𝑞1, 𝑞2,T)
Most Similar JITD Pattern: CrackAr-
ray,DeleteSingletonFromArray

D.8 Transform: InferFiltersFromConstraints
Scala:
case filter : Filter(condition , child)

case join : Join(left , right ,

joinType , conditionOpt , _)

Patterns:
Match(Filter, [o,r,c], 𝑞1,T)
Match(Join, [o,r,j,c,h], 𝑞1, 𝑞2,T)

19

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

Most Similar JITD Pattern: CrackAr-
ray,DeleteSingletonFromArray

D.9 Transform: ConvertToLocalrelation
Scala:
case Project(projectList ,

LocalRelation(output , data , isStreaming))

if !projectList.exists(hasUnevaluableExpr)

case Limit(IntegerLiteral(limit),

LocalRelation(output , data , isStreaming))

case Filter(condition ,

LocalRelation(output , data , isStreaming))

if !hasUnevaluableExpr(condition)

private def hasUnevaluableExpr(expr: Expression):

Boolean = {

expr.find(e => e.isInstanceOf[Unevaluable] &&

!e.isInstanceOf[AttributeReference]). isDefined

}

Patterns:
Match(Project, [o1,r2,p],

Match(LocalRelation, [o2,r2,op,d,i], ∅,T),
p.exists(hasUnevaluableExpr))

Match(Limit, [c],
Match(LocalRelation, [o,d,i], ∅,T),T)

Match(Filter, [o1,r1,c],
Match(LocalRelation, [o2,r2,op,d,i], ∅,T),
c.exists(hasUnevaluableExpr))

Most Similar JITD Pattern: DeleteSingletonFromArray

D.10 Transform: CollapseProject
Scala:
case p1 : Project(_, p2: Project)

case p : Project(_, agg: Aggregate)

case Project(l1 , g : GlobalLimit(_, limit :

LocalLimit(_, p2 : Project(l2, _))))

if isRenaming(l1, l2)

case Project(l1 , limit :

LocalLimit(_, p2 : Project(l2, _)))

if isRenaming(l1, l2)

case Project(l1 , limit :

LocalLimit(_, p2 : Project(l2, _)))

if isRenaming(l1, l2)

case Project(l1 , r :

Repartition(_, _, p : Project(l2, _)))

if isRenaming(l1, l2)

case Project(l1 , s :

Sample(_, _, _, _, p2 : Project(l2, _)))

if isRenaming(l1, l2)

private def isRenaming(list1: Seq[NamedExpression],

list2: Seq[NamedExpression]): Boolean =

{

list1.length == list2.length &&

list1.zip(list2). forall {

case (e1, e2) if e1.semanticEquals(e2) => true

case (Alias(a: Attribute , _), b)

if a.metadata == Metadata.empty && a.name ==

b.name => true

case _ => false

}

}

}

Patterns:
Match(Project, [o1,r1,p1],

Match(Project, [o2,r2,p2], 𝑞1,T),T)
Match(Project, [o1,r1,p],

Match(Aggregate, [o2,r2,g,a], 𝑞1,T),T)
Match(Project, [o1,r1,p1],

Match(Globallimit, [o2,r2,g],
Match(LocalLimit, [o3,r3,l],
Match(Project, [o4,r4,p2], 𝑞1,T),T),T),
isRenaming(p1,p2))

Match(Project, [o1,r1,p1],
Match(LocalLimit, [o2,r2,l],
Match(Project, [o3,r3,p1], 𝑞1,T),T),
isRenaming(p1,p2))

Match(Project, [o1,r1,p1],
Match(Repartition, [o2,r2,n,s],
Match(Project, [o3,r3,p2], 𝑞1,T),T),
isRenaming(p1,p2))

Match(Project, [o1,r1,p1],
Match(Sample, [o2,r2,l,u,w,s],
Match(Project, [o3,r3,p2], 𝑞1,T),T),
isRenaming(p1,p2))

Most Similar JITD Pattern: PivotLeft-
/Right,PushDownAndCrack The third match pattern
represents a 4-way join which is a exception. Most other
look at a 3-level deep subtree representative of a 3-way join.

E ORCA Transforms
Orca defines specific patterns for rewrites and matches at
runtime the AST nodes. If the node matches the pattern a
rewrite is defined over the node is replaced. Orca’s AST gram-
mar is slightly more expressive than our won in that certain
CExpression nodes in ORCA like CLogicalNaryJoin sup-
port multiple children; however (i) this is a limitation we
impose largely for simplicity of presentation, and (ii) none
of the patterns we encountered include recursive patterns
among the children of such variable-child nodes.
In the following, we provide (i) the Pattern for rewrites

along with the function that computes the rewrite’s promise

20

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

which determines the priority of the rewrite, (ii) The corre-
sponding pattern matching expression in our grammar, and
(iii) The most similar transform. Determining the priority of
a rewrite is encoded in the grammar as a constraint over the
pattern match.

E.1 Transform: ExpandNaryJoin
Cpp:
CXformExpandNAryJoin ::

CXformExpandNAryJoin(CMemoryPool *mp)

: CXformExploration(

// pattern

GPOS_NEW(mp) CExpression(

mp , GPOS_NEW(mp) CLogicalNAryJoin(mp),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternMultiLeaf(mp)),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternTree(mp))))

{

}

CXform :: EXformPromise

CXformExpandNAryJoin ::

Exfp(CExpressionHandle &exprhdl) const

{

if (exprhdl.DeriveHasSubquery(exprhdl.Arity() - 1))

{

// subqueries must be unnested before

// applying xform

return CXform :: ExfpNone;

}

#ifdef GPOS_DEBUG

CAutoMemoryPool amp;

GPOS_ASSERT (! CXformUtils ::

FJoinPredOnSingleChild(amp.Pmp(), exprhdl) &&

"join␣predicates␣are␣not␣pushed␣down");

#endif // GPOS_DEBUG

return CXform :: ExfpHigh;

}

Patterns:
Match(CLogicalNAryJoin, [exprhdl,p], [𝑞1 . . . 𝑞𝑛],

exprhdl.hasSubQuery)

Most Similar JITD Pattern: PushDownAndCrack

E.2 Transform: ExpandNaryJoinMinCard
Cpp:
CXformExpandNAryJoinMinCard ::

CXformExpandNAryJoinMinCard(CMemoryPool *mp)

: CXformExploration(

// pattern

GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalNAryJoin(mp),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternMultiTree(mp)),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternTree(mp))))

{

}

CXform :: EXformPromise

CXformExpandNAryJoinMinCard ::

Exfp(CExpressionHandle &exprhdl) const

{

return CXformUtils ::

ExfpExpandJoinOrder(exprhdl , this);

}

Patterns:
Match(CLogicalNAryJoin, [exprhdl,p], [𝑞1 . . . 𝑞𝑛],

exprhdl.expandJoinOrd)

Most Similar JITD Pattern: PushDownAndCrack

E.3 Transform: ExpandNaryJoinGreedy
Cpp:
CXformExpandNAryJoinGreedy ::

CXformExpandNAryJoinGreedy(CMemoryPool *pmp)

: CXformExploration(

// pattern

GPOS_NEW(pmp) CExpression(

pmp , GPOS_NEW(pmp)

CLogicalNAryJoin(pmp),

GPOS_NEW(pmp)

CExpression(pmp , GPOS_NEW(pmp)

CPatternMultiTree(pmp)),

GPOS_NEW(pmp) CExpression(pmp ,

GPOS_NEW(pmp) CPatternTree(pmp))))

{

}

CXform :: EXformPromise

CXformExpandNAryJoinGreedy ::

Exfp(CExpressionHandle &exprhdl) const

{

return CXformUtils ::

ExfpExpandJoinOrder(exprhdl , this);

}

Patterns:
Match(CLogicalNAryJoin, [exprhdl,p], [𝑞1 . . . 𝑞𝑛],

exprhdl.expandJoinOrd)
Most Similar JITD Pattern: PushDownAndCrack

E.4 Transform: ExpandNAryJoinDP
Cpp:
CXformExpandNAryJoinDP ::

CXformExpandNAryJoinDP(CMemoryPool *mp)

: CXformExploration(

// pattern

GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalNAryJoin(mp),

GPOS_NEW(mp) CExpression(mp, GPOS_NEW(mp)

CPatternMultiLeaf(mp)),

GPOS_NEW(mp) CExpression(mp, GPOS_NEW(mp)

CPatternTree(mp))))

{

}

CXform :: EXformPromise

CXformExpandNAryJoinDP ::

Exfp(CExpressionHandle &exprhdl) const

{

COptimizerConfig *optimizer_config =

COptCtxt :: PoctxtFromTLS ()-> GetOptimizerConfig ();

const CHint *phint = optimizer_config ->GetHint ();

const ULONG arity = exprhdl.Arity ();

// since the last child of the join operator is a

21

Conference’17, July 2017, Washington, DC, USA D.Balakrishnan, et al.

// scalar child

// defining the join predicate , ignore it.

const ULONG ulRelChild = arity - 1;

if (ulRelChild > phint ->UlJoinOrderDPLimit ())

{

return CXform :: ExfpNone;

}

return CXformUtils ::

ExfpExpandJoinOrder(exprhdl , this);

}

Patterns:
Match(CLogicalNAryJoin, [exprhdl,p], [𝑞1 . . . 𝑞𝑛],
exprhdl.Arity-1 > x || exprhdl.expandJoinOrd)
Code:
Most Similar JITD Pattern: PushDownAndCrack

E.5 Transform: Get2TableScan
Cpp:
CXformGet2TableScan :: CXformGet2TableScan(CMemoryPool *mp)

: CXformImplementation(

// pattern

GPOS_NEW(mp) CExpression(mp, GPOS_NEW(mp)

CLogicalGet(mp)))

{

}

CXform :: EXformPromise

CXformGet2TableScan ::

Exfp(CExpressionHandle &exprhdl) const

{

CLogicalGet *popGet =

CLogicalGet :: PopConvert(exprhdl.Pop ());

CTableDescriptor *ptabdesc = popGet ->Ptabdesc ();

if (ptabdesc ->IsPartitioned ())

{

return CXform :: ExfpNone;

}

return CXform :: ExfpHigh;

}

Patterns:
Match(CLogicalGet, [exprhdl,t,pt,o,k,c], ∅,

pt.isPartitioned)

Most Similar JITD Pattern: CrackArray

E.6 Transform: Select2Filter
Cpp:
CXformSelect2Filter :: CXformSelect2Filter(CMemoryPool *mp)

: // pattern

CXformImplementation(GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalSelect(mp),

GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CPatternLeaf(mp)),

// relational child

GPOS_NEW(mp)

CExpression(mp , GPOS_NEW(mp) CPatternLeaf(mp))

// predicate

))

{

}

CXform :: EXformPromise

CXformSelect2Filter ::Exfp(CExpressionHandle &exprhdl) const

{

if (exprhdl.DeriveHasSubquery (1))

{

return CXform :: ExfpNone;

}

return CXform :: ExfpHigh;

}

Patterns:
Match(CLogicalSelect,

[exprhdl,m,pt,PredicateExpr], 𝑞1,
exprhdl.hasSubQuery)

Most Similar JITD Pattern: CrackArray

E.7 Transform: InnerJoin2NLJoin
Cpp:
CXformInnerJoin2NLJoin ::

CXformInnerJoin2NLJoin(CMemoryPool *mp)

: // pattern

CXformImplementation(GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalInnerJoin(mp),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)), // left child

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)), // right child

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)) // predicate

))

{

}

CXform :: EXformPromise

CXformInnerJoin2NLJoin ::

Exfp(CExpressionHandle &exprhdl) const

{

return CXformUtils ::

ExfpLogicalJoin2PhysicalJoin(exprhdl);

}

Patterns:
Match(CLogicalInnerJoin,

[exprhdl,predicateExpr], 𝑞1, 𝑞2,
exprhdl.ExfpLogicalJoin2PhysicalJoin)

Most Similar JITD Pattern: PushDownAndCrack

E.8 Transform: InnerJoin2HashJoin
Cpp:
CXformInnerJoin2NLJoin ::

CXformInnerJoin2NLJoin(CMemoryPool *mp)

: // pattern

CXformImplementation(GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalInnerJoin(mp),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)), // left child

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)), // right child

GPOS_NEW(mp)

22

TreeToaster: Towards an IVM-Optimized Compiler Conference’17, July 2017, Washington, DC, USA

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)) // predicate

))

{

}

CXform :: EXformPromise

CXformInnerJoin2NLJoin ::

Exfp(CExpressionHandle &exprhdl) const

{

return CXformUtils ::

ExfpLogicalJoin2PhysicalJoin(exprhdl);

}

Patterns:
Match(CLogicalInnerJoin,

[exprhdl,predicateExpr], 𝑞1, 𝑞2,
exprhdl.ExfpLogicalJoin2PhysicalJoin)

Most Similar JITD Pattern: PushDownAndCrack

E.9 Transform: JoinCommutativity
Cpp:
CXformJoinCommutativity ::

CXformJoinCommutativity(CMemoryPool *mp)

: CXformExploration(

// pattern

GPOS_NEW(mp) CExpression(

mp, GPOS_NEW(mp) CLogicalInnerJoin(mp),

GPOS_NEW(mp)

CExpression(mp, GPOS_NEW(mp)

CPatternLeaf(mp)), // left child

GPOS_NEW(mp) CExpression(

mp , GPOS_NEW(mp)

CPatternLeaf(mp)), // right child

GPOS_NEW(mp)

CExpression(mp , GPOS_NEW(mp)

CPatternLeaf(mp))) // predicate

)

{

}

BOOL

CXformJoinCommutativity :: FCompatible(CXform :: EXformId exfid)

{

BOOL fCompatible = true;

switch (exfid)

{

case CXform :: ExfJoinCommutativity:

fCompatible = false;

break;

default:

fCompatible = true;

}

return fCompatible;

}

Patterns:
Match(CLogicalInnerJoin, [exprhdl,predicateExpr],

𝑞1, 𝑞2, exprhdl.id)
Most Similar JITD Pattern: PivotLeft/Right

E.10 Transform: ImplementUnionAll
Cpp:
CXformImplementUnionAll ::
CXformImplementUnionAll(CMemoryPool *mp)

: // pattern

CXformImplementation(GPOS_NEW(mp)

CExpression(

mp, GPOS_NEW(mp) CLogicalUnionAll(mp),

GPOS_NEW(mp) CExpression(mp, GPOS_NEW(mp)

CPatternMultiLeaf(mp))))

{

}

Patterns:
Match(CLogicalUnionAll, [exprhdl,i,o,k], [𝑞1 . . . 𝑞𝑛],T)

Most Similar JITD Pattern:MergeUnsorted/SortedConcat

23

	Abstract
	1 Introduction
	2 Notation and Background
	2.1 Pattern Matching Queries

	3 Bolting-On IVM for Pattern Matching
	3.1 Background: Incremental View Maintenance
	3.2 Bolting DBToaster onto a Compiler

	4 Pattern Matching on a Space Budget
	4.1 Indexing Labels
	4.2 Incremental View Maintenance

	5 AST-Optimized IVM
	5.1 Mutable Abstract Syntax Trees

	6 Inlining into Rewrite Rules
	6.1 Inlining Optimizations

	7 Evaluation
	7.1 Workload
	7.2 Data Gathering and Measurement
	7.3 Evaluation
	7.4 Results

	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References
	A Exploration of Spark and ORCA
	B JITD Compiler, Spark and ORCA
	C Spark and ORCA AST Schemas
	D Spark Transforms
	D.1 Transform: RemoveNoopOperators
	D.2 Transform: CombineFilters
	D.3 Transform: PushPredicateThroughNonJoin
	D.4 Transform: PushPredicateThroughJoin
	D.5 Transform: ColumnPruning
	D.6 Transform: RewritePredicateSubquery
	D.7 Transform: RemoveRedundantAliases
	D.8 Transform: InferFiltersFromConstraints
	D.9 Transform: ConvertToLocalrelation
	D.10 Transform: CollapseProject

	E ORCA Transforms
	E.1 Transform: ExpandNaryJoin
	E.2 Transform: ExpandNaryJoinMinCard
	E.3 Transform: ExpandNaryJoinGreedy
	E.4 Transform: ExpandNAryJoinDP
	E.5 Transform: Get2TableScan
	E.6 Transform: Select2Filter
	E.7 Transform: InnerJoin2NLJoin
	E.8 Transform: InnerJoin2HashJoin
	E.9 Transform: JoinCommutativity
	E.10 Transform: ImplementUnionAll

