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Recap

BinarySearch requires O(log(n)) steps…but this is not the whole picture!

● Runtime Complexity: O(log(n)) steps required
● Memory Complexity: O(1) memory required

○ We only ever need one page loaded at a time
● IO Complexity: O(log(n)) pages loaded

○ If a page can hold C records, the last log(C) search steps occur within 
that one page

○ But the first O(log(n)-log(C)) = O(log(n)) steps each load a new page

How can we do better?
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Solution

Trivial Solution:
● Load the entire array into memory

○ Load it once, and then reuse that memory for all searches

Problem: What if the array is too big to fit in memory?

Question: Do we need to preload the entire array to avoid page loads?
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Improving Binary Search

Observation 1: The records are much bigger than the search keys
● 64MB required to store 220 64B records
● 8MB required to store 220 8B keys

Observation 2: Pages store contiguous ranges of keys
● If we know what range of keys a page stores, we don't need to load 

pages that don't contain the key we are looking for
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Fence Pointers

Idea: Store the largest key of each page in an in-memory data structure
● Precompute this (hopefully smaller) data structure
● Re-use this in-memory data structure for all searches to find the page 

that stores the search key
○ Only load that one page, instead of one page per step of the search



Fence Pointers Example

Let's say our records are 64B, keys are 8B, our pages can hold 64 
records, and n=220 records:
● 220 64B records = 64MB
● 220 records / 64 = 214 pages
● 214 8B keys = 512KB ← Store these keys in a "Fence Pointer Table"

RAM:

Disk:

214 = 16,384 keys (Fence Pointer Table)

16,384 pages, 64MB total (the actual data)
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To find a record with key 312, for example, we binary search the fence 
pointer table first to find the page. Then search that page for the record.

keys 0-178 keys 192-273 keys 274-412 keys 458-611 …

Page 0 Page 1 Page 2 Page 3

Disk

RAM

178 273 412 611 …

0 1 2 3
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Fence Pointers Example

To find a record with key 312, for example, we binary search the fence 
pointer table first to find the page. Then search that page for the record.

keys 0-178 keys 192-273 keys 274-412 keys 458-611 …

Page 0 Page 1 Page 2 Page 3

Disk

RAM

178 273 412 611 …

0 1 2 3

273 < 312 < 412, so the record for key 312 exists on page 2

Load page 2 into memory, and binary search it
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Binary Search with Fence Pointers

Step 1: Binary search the fence pointer table
● All in memory, so IO complexity is 0

Step 2: Load page
● One load, so IO complexity is O(1)

Step 3: Binary search within page
● All in memory, so IO complexity is 0

Totaly IO Complexity: O(1)
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What about Runtime/Memory Complexity?

Records per page, C, is a constant, size of the fence pointer table is n / C

Runtime Complexity: log(n/C) + log(C) = O(log(n))
● Search the fence pointer table, then search the page

Memory Complexity: O(n/C + C) = O(n)
● Need to store the fence pointer table (at all times), and one additional 

page that we load after the fence pointer table search

O(n) is not ideal…what if the fence pointer table gets too big for memory?
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At some point, we will have to store the fence pointers on Disk…

In our current example with 4KB pages, and 8B keys,
we can fit 512 keys per page

Idea: What if we binary search the fence pointers on disk?
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With our current example:
● We can store 512 8B keys per 4KB page (22 keys per page)
● 220 records / 64 records per page = 214 pages of records
● 214 fence pointer keys = 25 pages
● Binary search of the pointer key pages will require log(25) = 5 loads
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Improving on Fence Pointers

IO Complexity: log(n) - log(Cdata) - log(Ckey) = O(log(n))

● Cdata = records per page (ie: 64)
● Ckey = keys per page (ie: 512)

Can we improve our search of the on-disk Fence Pointer Table…?



Improving on Fence Pointers

Idea: A fence pointer table for our fence pointer table!

(and if that fence pointer table is too big…a fence pointer table for that 
table…and so on and so on and so on…until we have one that fits in 

memory)
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Improving on Fence Pointers ISAM Index

Fence pointer array (in memory)

Fence pointer array (in a page on disk)

Page of actual data

1. Binary Search @ Level 0 
to find Level 1 page

2. Load and search 
Level 1 page to find 

Level 2 page

3. Load and search 
Level 2 page to find 

data page

4. Load and search data 
page to find the record



ISAM Index

IO Complexity:
● 1 read at L0 (or assume already in memory)
● 1 read at L1
● 1 read at L2
● …
● 1 read at Lmax
● 1 read at data level
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ISAM Index

Number of Levels:

Note this isn't base 2!



ISAM Index

Like BinarySearch, but "Cache-Friendly"
● Still takes O(log(n)) steps

● Still requires O(1) memory (1 page at a time)

● Now requires logCkey(n) loads from disk (logCkey(n) ≪ log2(n))



ISAM Index

What if the data changes?


