
P3 - Joins

Deadline: Wednesday, April 17, 2024

Accept Assignment: https://classroom.github.com/a/McUDU60i

Submit Assignment: https://autolab.cse.buffalo.edu/courses/cse410-s24/assessments/P3-
Join-Algorithms

In this assignment, you will implement three disk-oriented join algorithms

This assignment is intended to: - Give you experience writing algorithms for memory-bound
use cases - Explore the contrast between different algorithms - Implement a data structure

You should expect to spend approximately 20-30 hours on this assignment. Plan accordingly.

To complete this assignment, you should:

1. Accept this assignment through GitHub Classroom.

2. Modify the files listed below, implementing the functions labeled todo!() . Note that you
may need to add additional fields to some structures.

src/data_ops/nested_loop.rs ,

src/data_ops/block_nested_loop.rs ,

src/data_ops/on_disk_hash.rs ,

3. Commit your changes and push them to Github.

4. Go to Autolab, select your repository, acknowledge the course AI Policy, and click
Submit.

You may repeat steps 2-4 as many times as desired. You may also modify any of the files in the
data_ops module.

Overview

In this assignment you will implement three on-disk join algorithms:

Nested Loop Join

Block Nested Loop Join

On-Disk Hash Join

data_ops::Source<T>

This the Source struct represents an abstract collection of records of type T . A Source<T>

defines a single method: iter() that returns a fresh Iterator<Item = T> over the
collection. Examples of Source can be found in:

test_utils::RangeSource

tpch::CustomerFile

tpch::OrdersFile

data_ops::DataFile

Join Algorithms

All of the join algorithms take a Source<A> and a Source as input.

The join algorithms are composed of two parts:

A Source<(A, B)> that can be used to create...

An Iterator<Item = (A, B)> that actually 'materializes' the individual records

You will need to implement the Iterator for all three join algorithms.

Documentation

You may find the following documentation useful:

The Rust Book

std::fs::File

Run cargo doc --open

The following utility classes are provided:

data_ops::DataFile<T>

A DataFile stores a collection of records using the compact Postcard serialization format, using
the Rust serde library.

See the file src/data_ops/data_file.rs for documentation; In summary, DataFile can be

used to create temporary files to store data on-disk as-needed.

For example:

let a = RangeSource(0..100);
let data_file = DataFile::temporary()?
 .from_source(a)
 .build();

or

let mut builder::DataFileBuilder<u32> = DataFile::temporary()?;
builder.write(1);
builder.write(2);
builder.write(3);
builder.write(4);
let data_file = builder.build()

Serializing new types of data

The serde library requires that the records being stored implement the Serialize and
Deserialize traits. The serde library provides a macro that can be used to automatically

derive these traits. See tpch::Customer and tpch::Orders for examples.

data_ops::InMemHashJoin<A, B, GetKeyA, GetKeyB>

This class implements an in-memory hash algorithm. It may be useful in implementing the On-
Disk Hash Join algorithm. It follows the same general template as the other three join
algorithms, of defining both a source and an iterator class.

Objectives

In this assignment, you will implement three join algorithms

src/data_ops/nested_loop.rs

This file defines two structs: NestedLoopJoin and NestedLoopJoinIterator .

Enumerating the entire iterator produced by NestedLoopJoin should have:

 memory

 IO

 runtime

You will need to implement the method NestedLoopJoinIterator::read_one , which retrieves
the next element from the cartesian product of the two input sources.

O(1)

O(∣source_A∣ ∗ ∣source_B∣)

O(∣source_A∣ ∗ ∣source_B∣)

Recall that the nested loop join works by computing the cartesian product of the two sources
as follows:

for a in source_a.iter()?
{
 for b in source_b.iter()?
 {
 emit (a, b);
 }
}

Note the memory requirement. You should not construct the entire result all at once. Instead,
you'll need to implement a read_one method that constructs only the very next record.

A typical approach involves maintaining two iterators as state: One over the elements of
source_a , and one over the elements of source_b .

Advance the b iterator by one element.

If there are no more elements, reset the iterator (generate a new one) and advance the
a iterator by one step.

You will need to make changes beyond just the one function you're implementing; for example,
you will likely need to add fields to NestedLoopJoinIterator

Two test cases are provided:

nested_loop_simple

nested_loop_2way_join (note: This test is waaaay too slow to generate the full result; it is
configured to only generate the first 10 results)

src/data_ops/block_nested_loop.rs

This file defines two structs: BlockNestedLoopJoin and BlockNestedLoopJoinIterator .

Enumerating the entire iterator produced by NestedLoopJoin should have:

 memory

 IO

 runtime

You will need to implement the method NestedLoopJoinIterator::next() , which retrieves
the next element from the join of the two input sources.

Recall that the block nested loop join works by computing the cartesian product of the two
sources as follows:

O(block_size)

O(∣source_A∣ ∗ ∣source_B∣/block_size)

O(∣source_A∣ ∗ ∣source_B∣)

let mut iter_a = source_a.iter()?;
let mut buffer_a = /* read buffer_size elements from iter_a */
while buffer_a.len() > 0
{
 for b in source_b.iter()?
 {
 for a in buffer_a
 {
 emit (a, b)
 }
 }
 buffer_a = /* read buffer_size elements from iter_a */
}

As before, you will need to refactor the code above into an iterator.

Note the memory requirement. You should not construct the entire result all at once.

Additionally, note that, unlike the regular Nested Loop Join, the missing method here is
Iterator::next . This means you will need to emit only records that pass the provided
test(a, b) . See NestedLoopJoinIterator for ideas on how to do this.

You will need to make changes beyond just the one function you're implementing; for example,
you will likely need to add fields to BlockNestedLoopJoinIterator

Two test cases are provided:

block_nested_loop_simple

block_nested_loop_2way_join (note: This test is a bit too slow to generate the full result;
it is configured to only generate the first 100 results)

src/data_ops/on_disk_hash.rs

This file defines two structs: OnDiskHashJoin and OnDiskHashJoinIterator .

Enumerating the entire iterator produced by NestedLoopJoin should have:

Expected memory

 IO

Expected runtime

You will need to implement the body of the methods OnDiskHashJoin::new() and
OnDiskHashJoinIterator::next() .

Recall that the on-disk hash join works by building a series of hash-based partitions.

let data_files:Vec<(_, _)> = /* Create 2 data files for each partition */

//////// Handle this part in OnDiskHashJoin::new() ///////////

O(∣source_A∣/partitions + ∣source_B∣/partitions)

O(∣source_A∣ + ∣source_B∣)

O(∣source_A∣ + ∣source_B∣)

for a in source_a.iter()?
{
 /* append a to */ data_files[hash(get_a_key(a))]
}
for b in source_b.iter()?
{
 /* append b to */ data_files[hash(get_b_key(b))]
}

//////// Handle this part in OnDiskHashJoinIterator::next() ///////////

for i in 0 .. partitions
{
 /* do an in-memory hash join on data_files[i].0 and data_files[i].1 */
}

Note that this algorithm works in two phases:

1. Loading data into partitions on disk. Do this phase in OnDiskHashJoin::new()

2. Performing a hash join over each successive partition. Do this phase in
OnDiskHashJoinIterator::next()

Note the memory requirement. You should not construct the entire result all at once.

Also note the presence of two other classes that should help you: - You can use
data_ops::DataFile::temporary() (see docs above) to create temporary files that you can

store each partition in. - You can use data_ops::InMemHashJoin instead of implementing
an in-memory hash join yourself

Two test cases are provided:

on_disk_hash_simple

on_disk_hash_2way_join (note that this test can take a minute or three, depending on
how fast your disk is)

Strategy

1. Implement the regular nested loop join

2. Implement the block nested loop join

3. Implement the on-disk hash join

Additional Notes

You may not add new crates without permission.

