CSE 350

Advanced Data Structures

Topic 18: External Algorithms
(and midterm review)

S A e AT
\0) 09 " b
]Oi:jwmwzn—z nto N ”f///{ e 't
3 |

6’2/> /0,"01) \?“ﬂ{j :'l
2e 10,20 =127,
Answer each question in this section with respect t4 IWOO records stored in each the follewing thrée on-disk data

structures:

VP 1o 4 leve s

e A sorted layout accessed by binary search.

v An ISAM index. =~ =S¢ (s+Data =3 Leve s

ﬂ\t_euﬂl _ {_]@Od——"/“'

e An on-disk Hash Table with one disk page per bucket.
For all three on-disk data structures, assume that each disk page holds exactl@cords. For the ISAM index, assume
that each directory page holds 1000 pointers (and thus 999 separator keys). For the hash table, assume that each bucket

is completely full with no overflow (i.e., 10,000 buckets). For simplicity, assume that record keys are assigned sequentially
starting from 0.

Each of the following The questions ask about the IO complexity of the following workload

(e A bid with key 100,000 nel) —
¢0§SErec wit ey 100,000 5‘1/'160/47% /66{ Hc\ﬁl/'] u\j/f
o Agckss recdtd with key 100,001
gww{ . A(}@s re@i \\Vgh}ey 20 < M_—_/
- / rt At] }l Z |
roo .+ Aggoss record with key 21 < Sa 11y St L) DDE] |
. Ac}:ess recEﬂqi ,v\fﬁh key 1,240 /
O Senjc ds /. [0000
o Aqeyss recordlwith key 1,241 / | 7
e Afc@s recbid with key 100,105)

Each access is started entirely from scratch, with no memory of any prior accesses.

Question 1 [10 points |

Consider a naive implementation of disk access similar to what you implemented in PAO. That is, you have 1 page
of working memory available to load on-disk data into, and so each access to a new page requires an IO. For each ™

of the three data structures, state the exact IO complexity (i.e., exactly how many pages need to be read from
disk) to perform the workload. Show your work.

[tash Jable = £

Lshm: Mo ﬁmww//om//‘ébme/f% /’ Page)
75 =/

Sinary)52 105

Consider a caching buffer manager with an LRU replacement policy and 3 pages of working memory. For each
of the three data structures, state the exact IO complexity. Show your work.

ash Jable = X

L SA M s f*OT&_*F@*’%C%‘? =%
dP?\\’Lé/\yj ,g\’;:’oi-\

Consider a caching buffer manager with a FIFO replacement policy and 3 pages of working memory. For each
of the three data structures, state the exact IO complexity. Show your work.

tash Jable © £

—_—

‘?-\/)w/\7 . /LQ.(

Consider a caching buffer manager with an LRU replacement policy and 20 pages of working memory. For each
. \
of the three data structures, state the exact IO complexity. Show your work.

Fash Jable = X2
LSAM L)Tt 2 L) t bdyt., = 2

E’\/Iﬁh¢7 : % 4

Express the following query in terms of the relational algebra operators: Project (7; indicate what attributes to
project), Filter (o; indicate the condition), Join (Nr;\igdicate the join condition), Union (U), and/or Aggregate
(>°; indicate the com i U >

a.name, m.name FROM @1, movies m) WHERE a.aCTted_in = m.id

SELEC

e | [a x)
ﬁanur’\{,"‘)"”’ q ch“l = . V\/\ — Mcﬁ7.\7 — O\ X)

Actors

id name born_in acted_in
144 | Carey Elwes | London, UK 799 / freds //W' N
705 | Robin Wright | Dallas, TX 99) /i /l
705 | Robin Wright | Dallas, TX 830 P ehq gy f~
Movies
id name awards director irector_birthday
799 | The Princess Bride ASFFHF, Rob Reiner 1947-03-06
258 | This is Spinal Tap OFTA Rob Reiner 1947-03-06
830 Forrest Gump @, Oscar, SFFHF, ACAJ| Robert Zemeckis

K_Monre (7—\4/\ 0 1L /c,/u{_

The SQL LIKE condition performs simple pattern matching, where ? matches a single character and 7% matches
any number of characters. For example, one could write name LIKE ’0livery; to match any record who’s name

field begins with the string Oliver.
Write a SQL query to count the number of movies that have won at least one Oscar.

)FKO/V\ /‘40\/\\{5

rl \\
WHRERE aw als |3 x & O/a @Suf 0/0

Identify at least two ways in which the datasets above violate our rules for “tidy” data. Propose a fix for the
violations you list in the form of a new schema for the dataset. That is, list each table in your corrected dataset.
For each table list the attributes in the table.

Coe abo e

The questions in this section are about record layouts stored on 50 byte pages. Each question presents a sequence of
operations, and asks you to draw the state of the page after the operations are performed. You do not need to draw
each bit/byte individually; Instead follow the convention used in class (and in the PA2 function descriptions): Rows bytes
with the upper-left representing the zero’th byte, and the lower-right representing the last byte. For each region of the
page used to store data, make sure to identify: (i) how many bytes the region occupies, (ii) what role the data stored
there serves, and (iii) what specific data is stored there (e.g., as a string or integer). Use your PA2 implementation as a
reference, but do not defragment.

Assume that all strings are not ’\0’-terminated, and that all integers are normal width (4 bytes). Strings should not
include their enclosing quotation marks. T

. < —>¢c—y D — —
e Insert ["foo!", 42] at record index O —— —_— ~
[T el o0 1| Yz |

e Insert ["bar", 9] at record index - 3

{\x//'\ O "— {‘I\C\J) &61 “\SL/P/
a0t each felv M VS

— Q/\A ot cecord WA E
\ R

7] ’/fk;\‘
W {r0e
| N T~ b recortsalloced
S~ N\ N/ 1 5
Tree SPu e ph

\ \ /_ gﬁfho\db{“@) a'/\ e h (¢ ord
¥/—\ ﬁli ioji’s\’ 2_:

-

As before, but then also...
e Update record index 0 to ["moof!", 100]
e Delete record index 1

— T e\

LoyN

Realk from K 7 7 sorted euts at oue

L/ R Y D/@#w,(méj Frad leos (—
I\

L\\ Q \& ON) re Pﬁ/(/ﬁum
]

HTT_) D[NK) Ft/nf.?/eg,

- Tdea . T

)/:\ \\/OK)l/) SorT (Sf" /L,/)WJ/LS
(7K)L/) e V)oSE My »/\ {[f'/"lﬁ) iééo,/ﬁ’/

K)L/N“e; ansert qpuf

Méf
’D o (et

=) 0[N Lyle) K

Optimizi

Pfffmjl B
29 3 It srepTe
@ LEll ot e
2 foad mig reqord (Epat B9
3) 7 d [(< h/""”ﬂ'?m\}‘(’s%‘
|y 3, mive fo outpu TG 2
) b"fcdﬁ
29 1 elace et iapt
L’r%? Zﬂ/m &t possible
S o
_ else Loarsy bhateb oot 7
(Cus <2

Tolly swtted aray Ewa%{ Socfed a5 e = LM

55/1"(//1 Allny . &)451,/411\?(»\?/)60(7%/ (W Size :/\/

Folly
\KJKV\I/L'JS{\

