
ARIES (& Logging)
Database Systems: The Complete Book

Ch 17

1

Transaction Correctness
• Reliability in database transactions guaranteed by ACID

• A - Atomicity (“Do or Do Not, there is nothing like try”) -
usually ensured by logs

• C - Consistency (“Within the framework of law”) - usually
ensured by integrity constraints, validations, etc.

• I - Isolation (“Execute in parallel or serially, the result
should be same”) - usually ensured by locks

• D - Durability (“once committed, remain committed”) -
usually ensured at hardware level

3

What does it mean for a transaction to be committed?

4

commit
returns

successfully
=

the xact’s
effects

are visible
forever

5

commit
returns

successfully
=

the xact’s
effects

are visible
forever

commit
called but

doesn’t
return

=

the xact’s
effects
may be
visible

Motivation

6

T1

T2

T3

T4

T5

Image copyright: Wikimedia Commons

CRAS
H!

Time

Committed Transactions.
These should be present when the DB restarts.

Uncommitted Transactions.
These should leave no trace

• How do we guarantee durability under failures?

• How do aborted transactions get rolled back?

• How do we guarantee atomicity under failures?

7

8

Problem 1: Providing durability under failures.

9

Simplified Model
When a write succeeds, the data is completely written

Problems

• A crash occurs part-way through the write.

• A crash occurs before buffered data is written.

10

Write-Ahead Logging

11

A 8

B 12

C 5

D 18

E 16

Before writing to the database,
first write what you plan to write

to a log file…

Image copyright: OpenClipart (rg1024)

W(A:10)
Log

Write-Ahead Logging

12

A 8

B 12

C 5

D 18

E 16

/ 10
Once the log is safely on disk
you can write the database

Image copyright: OpenClipart (rg1024)

W(A:10)
Log

Write-Ahead Logging

13

A 8

B 12

C 5

D 18

E 16

/ 10
Log is append-only,
so writes are always

efficient

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log

Write-Ahead Logging

14

A 8

B 12

C 5

D 18

E 16

/ 10

/ 8

/ 9

…allowing random writes
to be safely batched

Image copyright: OpenClipart (rg1024)

W(A:10)
W(C:8)
W(E:9)

Log

15

Problem 2: Providing rollback.

Single DB Model

16 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

Txn 1 Txn 2

Single DB Model

17 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20
Txn 1 Txn 2

Single DB Model

18 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

19

/

/

Txn 1 Txn 2

Single DB Model

19 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

14

19

/

/

Txn 1 Txn 2

Single DB Model

20 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

/ 20

14

19

15/

/

/

Txn 1 Txn 2

A 8

B 12

C 5

D 18

E 16

Staged DB Model

21 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

Txn 1

Txn 2

A 8

B 12

C 5

D 18

E 16

/ 20

14/

Staged DB Model

22 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

A 8

B 12

C 5

D 18

E 16

E = 19
B = 15
ABORT

15

19

/

/

Txn 1

Txn 2

A 8

B 12

C 5

D 18

E 16

/ 20

14/

Staged DB Model

23 Image copyright: OpenClipart (rg1024)

A = 20
B = 14
COMMIT

E = 19
B = 15
ABORT

Txn 1

Txn 2

24

Is staging always possible?

• Staging takes up more memory.

• Merging after-the-fact can be harder.

• Merging after-the-fact introduces more latency!

25

26

Problem 2: Providing rollback.
for the single database model

^

UNDO Logging

27

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Store both the “old” and the “new”
values of the record being replaced

UNDO Logging

28

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

UNDO Logging

29

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

30

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

31

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

UNDO Logging

32

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

ABORT

Log Sequence Number
Linked Lists

33

LastLSNXID

Transaction Table

,

LSN, Prev LSN,
Prev Image, …

ABORT
[XID]Prev Image

Log

LSN, Prev LSN,
Prev Image, …Prev Image

(necessary for crash recovery)

34

Problem 3: Providing atomicity.

35

Goal: Be able to reconstruct all state at the time
of the DB’s crash (minus all running xacts)

36

What state is relevant?

DB State

37

A 8

B 12

C 5

D 18

E 16

W(A:8!10)
W(C:5!8)
W(E:16!9)

/ 10

/ 8

/ 9

Log

Image copyright: OpenClipart (rg1024)

Active Xacts

Xact:1, Log: 45 43:
44:
45:Xact:2, Log: 32

On-Disk

On-Disk
(or rebuildable)

In-Memory
Only!

Rebuilding the Xact Table

38

Log every COMMIT
(replay triggers commit process)

Log every ABORT
(replay triggers abort process)

New message: END
(replay removes Xact from Xact Table)

What about BEGIN?
(when does an Xact get added to the Table?)

Transaction Commit
• Write Commit Record to Log

• All Log records up to the transaction’s LastLSN are
flushed.

• Note that Log Flushes are Sequential,
Synchronous Writes to Disk

• Commit() returns.

• Write End record to log.

39

Simple Transaction Abort
(supporting crash recovery)

• Before restoring the old value of a page, write a
Compensation Log Record (CLR).

• Logging continues during UNDO processing.
• CLR has an extra field: UndoNextLSN

• Points to the next LSN to undo (the PrevLSN of
the record currently being undone)

• CLRs are never UNDOne.
• But might be REDOne when repeating history.
• (Why?)

40

Rebuilding the Xact Table

41

Optimization: Write the Xact Table to the log periodically.
(checkpointing)

ARIES Crash Recovery
• Start from checkpoint stored in

master record.

• Analysis: Rebuild the Xact
Table

• Redo: Replay operations from
all live Xacts (even
uncommitted ones).

• Undo: Revert operations from
all uncommitted/aborted
Xacts.

42

Oldest log record
of transaction
active at crash

Smallest recLSN
in dirty page table

after Analysis

Last Checkpoint

CRASH

A R U

