
ARIES (& Logging)
Database Systems: The Complete Book 

Ch 17
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Transaction Correctness
• Reliability in database transactions guaranteed by ACID  

• A - Atomicity (“Do or Do Not, there is nothing like try”) - 
usually ensured by logs 

• C - Consistency (“Within the framework of law”) - usually 
ensured by integrity constraints, validations, etc.  

• I - Isolation (“Execute in parallel or serially, the result 
should be same”) - usually ensured by locks 

• D - Durability (“once committed, remain committed”) - 
usually ensured at hardware level 
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What does it mean for a transaction to be committed?
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Motivation
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Committed Transactions.  
These should be present when the DB restarts.

Uncommitted Transactions.  
These should leave no trace



• How do we guarantee durability under failures? 

• How do aborted transactions get rolled back? 

• How do we guarantee atomicity under failures?
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Problem 1: Providing durability under failures.
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Simplified Model 
When a write succeeds, the data is completely written



Problems

• A crash occurs part-way through the write. 

• A crash occurs before buffered data is written.
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Write-Ahead Logging
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to a log file…
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Write-Ahead Logging
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Write-Ahead Logging
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Write-Ahead Logging
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Problem 2: Providing rollback.



Single DB Model
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Single DB Model
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Single DB Model
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Single DB Model
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Single DB Model
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Is staging always possible?



• Staging takes up more memory. 

• Merging after-the-fact can be harder. 

• Merging after-the-fact introduces more latency!
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Problem 2: Providing rollback.
for the single database model

^



UNDO Logging
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Store both the “old” and the “new” 
values of the record being replaced



UNDO Logging
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UNDO Logging
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UNDO Logging
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UNDO Logging
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UNDO Logging
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Log Sequence Number 
Linked Lists
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LastLSNXID

Transaction Table

,

LSN,  Prev LSN, 
Prev Image, …

ABORT
[XID]Prev Image

Log

LSN,  Prev LSN, 
Prev Image, …Prev Image

(necessary for crash recovery)
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Problem 3: Providing atomicity.
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Goal: Be able to reconstruct all state at the time 
of the DB’s crash (minus all running xacts)
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What state is relevant?



DB State
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Rebuilding the Xact Table
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Log every COMMIT 
(replay triggers commit process) 

Log every ABORT 
(replay triggers abort process) 

New message: END 
(replay removes Xact from Xact Table)

What about BEGIN? 
(when does an Xact get added to the Table?)



Transaction Commit
• Write Commit Record to Log 

• All Log records up to the transaction’s LastLSN are 
flushed. 

• Note that Log Flushes are Sequential, 
Synchronous Writes to Disk 

• Commit() returns. 

• Write End record to log.
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Simple Transaction Abort 
(supporting crash recovery)

• Before restoring the old value of a page, write a 
Compensation Log Record (CLR). 

• Logging continues during UNDO processing. 
• CLR has an extra field: UndoNextLSN 

• Points to the next LSN to undo (the PrevLSN of 
the record currently being undone) 

• CLRs are never UNDOne. 
• But might be REDOne when repeating history.   
• (Why?)
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Rebuilding the Xact Table
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Optimization: Write the Xact Table to the log periodically. 
(checkpointing)



ARIES Crash Recovery
• Start from checkpoint stored in 

master record. 

• Analysis: Rebuild the Xact 
Table 

• Redo: Replay operations from 
all live Xacts (even 
uncommitted ones). 

• Undo: Revert operations from 
all uncommitted/aborted 
Xacts.
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Oldest log record 
of transaction 
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in dirty page table 
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