
Delimited — Separator character splits fields (‘,’) /records (‘\n’)

Fixed Width — Each field/record has a predictable / known size

Directory — Each field/record has a fixed-size header/footer indicating where each field begins

Physical Layout - Records in Page / Fields in Record

Static vs Dynamic

Primary Hash — Put full records into a hash table (O(1) lookup, but only for == predicates)

B+Tree

LSM Tree

Primary Tree — Put full records into a tree-structure (O(log(N)) lookup, works for any ==, >, < predictate)

Secondary (Hash or Tree) — Index just record IDs in to avoid multiple copies of the entire record

Indexing

In Memory

External

Sorting

1-Pass Hash — Build a hash-table in memory to store each group and its current aggregate value

Sort First — After sorting on group-by columns, all elements in a group adjacent (O(Nlog(N)) time)

2-Pass Hash — Organize data into hash buckets, then do a 1-pass hash for each bucket

Group-By Aggregation

Nested Loop Join — Foreach s in S : Foreach r in R : if test(s, r) : emit(s, r)

Block-Nested Loop Join — Same, but add 2 more layers of loop, loading in blocks

Index-Nested Loop Join — Replace inner loop with an index lookup based on the outer loop

Sort/Merge Join — Sort both sides of the join first, then scan over the two lists in parallel

2-Pass Hash Join — Group data from both sides into parallel buckets, then do an in-memory join on each bucket.

1-Pass Hash Join — Build an in-memory hash table for one side, then use it for an index-nested loop join ewith the other.

1-Pass Tree Join — Build an in-memory tree index for one side, then use it for an index-nested loop join with the other.

Joins

Generally more!

Assuming you make each choice exactly once, 864 options!

Programmers need to think about what they want to compute AND how to compute it, all at the same time

Violating separation of concerns

We need a way to reason about “equivalent” options.

We need a way to evaluate which option is “best”.

Can we fix it? Yes, but we need two things:

Messy!

Recap — Tons of Options

Like Math: 1 + 1 ≠ “Bob”… it’s a number instead

X,Y are tables, X (?) Y is also a table (if we decide on ‘(?)’ correctly)

Common theme: Every expression in this language defines a table

Need some sort of atomic, leaf value… just “a table” with an explicit value

What are the elements of this language (a “Relational Algebra”)?

Basic idea: Create a language (or “Algebra”) to describe computations

Reasoning about Equivalent Options

Filter (also called Select) — σc

Map (also called [Generalized] Projection) — πA

Union — U

The basic operations we discussed at the start:

Sort — τ

Aggregation (and Group-By Aggregation) — ɣ
Cross Products (and Joins) - x (and ⋈)

The stuff we talked about in the last few classes seemed useful

Convert Bags to Sets (Distinct) — δ

Take the first k records (Limit) — L

Some other useful tools:

… and so is π(σc(R))

… and so is π(σc(R x S))

If R is a table, then so is σ(R)

… so we give it a shorthand: R ⋈c S

R ⋈(R.ship = S.ship) S → R ⋈ship S

Also called a ‘natural join’: And of equality predicates on all columns with the same name

R ⋈(R.ship = S.ship) S → R ⋈ S (if ‘ship’ is the only attribute name in common between R and S)

… Also a few other common shorthands:

The “join” pattern σc(R x S) occurs often — and we have more efficient algorithms for it

πLast Name(σLoc=‘Bajor’(Locations ⋈ship Captains))

πLast Name((σLoc=‘Bajor’(Locations)) ⋈ship Captains)

πLast Name((πLast Name,Ship(σLoc=‘Bajor’(Locations))) ⋈ship Captains)

These are all equivalent queries!

Example: Come up with 2-3 separate queries for the Last Names of all Captains of a Ship Located at Bajor.

Let’s try a few things:

Two expressions are equivalent if they’re guaranteed to produce the same output

What is Equivalent?

Equivalent Expressions

(No Beard) (Beard)

(Leonard Nimoy) (Zachary Quinto)=
Two different expressions of the “same” character

≠

They look the same, but one is good, one is evil

RA Equivalencies
(Decomposable)

(Commutative)

(Idempotent)

(Associative)
(Commutative)

Try It: Show that

Selection

Projection

Cross Product (and Join)

(Decomposable)

Selection and Projection

Selection commutes with Projection
(but only if attribute set a and condition c are compatible)

a must include all columns referenced by c

Show that

When is this rewrite a good idea?

Join

Selection combines with Cross Product
to form a Join as per the definition of Join

(Note: This only helps if we have a join algorithm for conditions like c)

Show that

When is this rewrite a good idea?

Selection and Cross Product

Selection commutes with Cross Product
(but only if condition c references attributes of R exclusively)

Show that

When is this rewrite a good idea?

Projection and Cross Product

Projection commutes (distributes) over Cross Product
(where a1 and a2 are the attributes in a from R and S respectively)

Show that

(under what condition)
How can we work around this limitation?

When is this rewrite a good idea?

RA Equivalencies

Union and Intersections are Commutative and
Associative

Selection and Projection both commute
with both Union and Intersection

When is this rewrite a good idea?

Example

SELECT R.A, T.E
 FROM R, S, T
 WHERE R.B = S.B
 AND S.C < 5
 AND S.D = T.D

R S

T

x

x

