
CSE 562 Final Solutions

May 14, 2015

Question Points Possible Points Earned

A 20
B 20
C 20
D 20
E 20
Total 100

UBIT:

Question A: Relational Algebra
(20 points)

Consider the following two Bag Relational Algebra expressions (] denotes Bag Union): Q1 and
Q2. The two queries are identical, except that Q2 contains additional rows in the relations R and
T , represented by the relations ∆R and ∆T respectively.

R S T

⋈

⋈

σ

π

⊎ ⊎

⋈

⋈

σ

π

R ΔR

S

T ΔT

Q1 Q2

Part 1 (15 pts): Assume that the result for Q1 is materialized and available, suggesting
that incremental view maintenance may be ideal for this query. Recall that in incremental view
maintenance, our goal is to construct a delta query ∆Q1→2 such that Q2 ≡ Q1]∆Q1→2, allowing
us to re-use the already available Q1. Using the set of relational algebra equivalencies given on the
reference page, rewrite Q2 into the form Q1]∆Q1→2 and clearly indicate which part corresponds
to ∆Q1→2

Distributivity of union over join:

(R]∆R) ./ S ≡ (R ./ S)] (∆R ./ S)

Let’s refer to the above query as QRS . Union commutes through selection:

σ(T]∆T) ≡ (σT)] (σ∆T)

Apply distributivity again:

QRS ./ ((σT)] (σ∆T)) ≡ (QRS ./ σT)] (QRS ./ σ∆T)

Distributivity once more:

(R ./ S)] (∆R ./ S) ./ σT ≡ ((R ./ S) ./ σT)] ((∆R ./ S) ./ σT)

And similarly for ∆T , resulting in:

π(((R ./ S) ./ σT)] ((∆R ./ S) ./ σT)] ((R ./ S) ./ σ∆T)] ((∆R ./ S) ./ σ∆T))

Union commutes through projection:

(π((R ./ S) ./ σT))] π(((∆R ./ S) ./ σT)] ((R ./ S) ./ σ∆T)] ((∆R ./ S) ./ σ∆T))

2 of ??

UBIT:

Which means that ∆Q1→2 is:

π(((∆R ./ S) ./ σT)] ((R ./ S) ./ σ∆T)] ((∆R ./ S) ./ σ∆T))

Part 2 (5 pts): Recall that the performance benefit of this ‘delta-form’ query is a result of
the delta query being much cheaper to evaluate than the original query. That is, constructing the
output of Q2 has a cost of O(|Q1|+ cost(∆Q1→2)): A linear scan over the pre-materialized results
Q1 and an evaluation of the delta query.

Consider what happens when we define two new queries Q′
1, Q′

2 by replacing the projection π
in Q1, Q2 (respectively) with the following group-by aggregate:

γR.A,S.B,T.C,SUM(T.D),MAX(T.E)

It is not possible to rewrite Q′
2 into a form Q′

1]∆Q′
1→2. However, it’s still possible to rewrite the

query to obtain a similar performance benefit. Provide a relational algebra query (as a plan or an
RA expression) that explicitly uses the relation Q′

1 to reduce the cost of evaluating Q′
2 in the same

way as above.
Label the following expression ∆Q′

1→2

((∆R ./ S) ./ σT)] ((R ./ S) ./ σ∆T)] ((∆R ./ S) ./ σ∆T)

As they are almost identical, cost(∆Q′
1→2) ≈ cost(∆Q1→2), and the following query is efficient:

γR.A,S.B,T.C,SUM(T.D),MAX(T.E)(Q
′
1]∆Q′

1→2))

3 of ??

UBIT:

Question B: Cost-Based Optimization
(20 points)

Relation R has schema (A,B), and contains 100 rows.
Relation S has schema (B,C), and contains 200 rows.
Relation T has schema (C,D), and contains 400 rows.

Assume a uniform distribution for all values.
Attribute A is a primary key for A and has 100 distinct values.
Attribute B has 50 distinct values (in both R and S).
Attribute C has 20 distinct values (in both S and T).
Attribute D has values in the range 0 ≤ D < 10 in T .

Now consider the following query plan:

R S T

⋈B

⋈C

σD<5

Part 1 (5 pts): How many tuples are emitted by ./B , above.
The RF for an equijoin on B is 1

50 , out of a total of 100× 200 tuples, or 400 tuples in total.
Part 2 (5 pts): How many tuples are emitted by σD<5, above.
The predicate covers half of the range of values in D. Thus, the reduction factor is 1

2 , or 200 tuples.
Part 2 (10 pts): How many tuples are emitted by ./C , above.
The RF for an equijoin on C is 1

20 , so the overall RF is:

1

50
× 1

2
× 1

20

#tuples =
1

50
× 1

2
× 1

20
× 100× 200× 400 = 4000

4 of ??

UBIT:

Question C: Transactions
(20 points)

Each part of this question provides a sequence of read, write, and commit arrivals. For each
sequence of arriving events, show the final schedule that would result under each of the following
concurrency protocols. Do not replay aborted transactions.

If an operation would block (without being aborted), it and all subsequent operations in the
same transaction are delayed until the blocking locks are released.

Assume the following: The Timestamp CC protocol uses transaction ID numbers as timestamps.
Validation-Based CC assigns timestamps in the order in which commits occur. Periodic Deadlock
Detection prefers to kill younger transactions.

For lock-based protocols, show all lock acquires and releases. Indicate all transactions that are
aborted by the concurrency protocol.

• Strict 2PL with Periodic Deadlock Detection

• Validation-Based Optimistic CC

• Timestamp CC without Versioning

• Timestamp CC with Versioning

Part 1 (10 pts):

1-8: T1: R(X), T2: W(X), T1: W(Y), T2: R(Y), T3: R(Z), T1: W(Z), T3: W(X), T1: COMMIT,

9-12: T2: W(Y), T3: W(Z), T2: COMMIT, T3: COMMIT

S = Acquire Shared, X = Acquire Exclusive, U = Unlock
2PL: 1:S(X), 1:R(X), 2:X(X), 1:X(Y), 1:W(Y), 3: S(Z), 3: R(Z), 1:X(Z); DEADLOCK; 3: ABORT,
1:W(Z), 1: COMMIT, 1:U(X, Y, Z), 2: W(X), 2:S(Y), 2:R(Y), 2:X(Y), 2:W(Y), 2:COMMIT,
2:U(X,Y)
OCC: ops 1-7 as arrived, 1: COMMIT, 2:W(Y), 3:W(Z), 2:COMMIT, 3:ABORT (invalid read on
Y)
TSCC: ops 1-3 as arrived, 2: ABORT (invalid read on Y), 3:R(Z), 1: ABORT (invalid write on
Z), 3:W(X), 3:W(Z), 3: COMMIT
MVTSCC: ops 1-5 as arrived, 1: ABORT (invalid write on Z), 3:W(X), 2:W(Y), 3:W(Z), 2:
COMMIT, 3: COMMIT
Part 2 (10 pts):

1-8: T2: W(Y), T1: W(X), T2: W(X), T3: W(X), T1: R(Y), T2: R(X), T1: COMMIT, T2: COMMIT,

9-10: T3: W(Y), T3: COMMIT

2PL: 2:X(Y), 2:W(Y), 1:X(X), 1:W(X), 2:X(X), 3:X(X), 1:S(Y); DEADLOCK; 2:ABORT, 2:U(Y);
1: R(Y), 1: COMMIT, 1:U(X,Y), 3:W(X), 3:X(Y), 3:W(Y), 3: COMMIT, 3: U(X,Y)
OCC: ops 1-6 as arrived, 1: ABORT (Invalid read on Y), 2: ABORT (Invalid read on X), 3:W(Y),
3: COMMIT
TSCC: ops 1-4 as arrived, 1: ABORT (Invalid read on Y), 2: ABORT (Invalid read on X), 3:W(Y),
3: COMMIT
MVTSCC: ops 1-4 as arrived, 1: R(Y), 2: R(Y), 1: COMMIT, 2: COMMIT, 3:W(Y), 3: COMMIT

5 of ??

UBIT:

Question D: ARIES & Logging
(20 points)

A database recovers after a crash with the following log file, with #: TN-W(PX) denoting log
entry # recording a write to page PX from Transaction TN.

1: T1-W(P1), 2: T1-W(P4), 3: T1-W(P2), 4: T4-W(P4), 5: T2-W(P4), 6: T1-W(P5), 7: T4-W(P1),

8: T1-COMMIT, 9: T4-W(P4)

Meta-data for data pages safely flushed to disk is as follows:

Page 1 2 3 4 5
Last Write 7 3 0 2 0

The log begins from the most recently completed checkpoint. Data pages 1-5 loaded from disk
were last written to at timestamps: 7, 3, 0, 2, and 0 respectively. The checkpointed transaction
table has only a single transaction T0 with no prior writes.

Part 1 (15 pts): Go through the ARIES recovery protocol step-by-step, clearly indicating every
modification to a data page, the transaction table, and the last-written marker on each data page.
Analysis begins with the checkpoint at timestamp 0.

1. Add T1 to transaction table with Last Write of LSN1

2. Update T1 Last Write to LSN2

3. Update T1 Last Write to LSN3

4. Add T4 to transaction table with Last Write of LSN4

5. Add T2 to transaction table with Last Write of LSN5

6. Update T1 Last Write to LSN6

7. Update T4 Last Write to LSN7

8. Remove T1 from transaction table.

9. Update T4 Last Write to LSN9

The earliest timestamp is 0. Redo begins at timestamp 1.

1. Replay Write to P1; Update P1 Last Write to LSN1

2. Replay Write to P4; Update P4 Last Write to LSN2

3. Replay Write to P2; Update P2 Last Write to LSN3

4. Replay Write to P4; Update P4 Last Write to LSN4

5. Replay Write to P4; Update P4 Last Write to LSN5

6. Replay Write to P5; Update P5 Last Write to LSN6

7. Replay Write to P1; Update P1 Last Write to LSN7

6 of ??

UBIT:

8. no-op

9. Replay Write to P4; Update P4 Last Write to LSN9

Final Transaction Table:

Transaction Last Write
T0 n/a
T2 LSN5
T4 LSN9

Undo begins by removing T0 from the transaction table (Read only transaction). Then

• Append T2-BEGIN ABORT; Appended operation has LSN10

• Append T4-BEGIN ABORT; Appended operation has LSN11

• Append CLR for LSN9; Appended operation has LSN12. Update T4 Last Write to LSN7.

• Append CLR for LSN7; Appended operation has LSN13. Update T4 Last Write to LSN4

• Append CLR for LSN5; Appended operation has LSN14. Update T2 Last Write to n/a.

• Append T2-END ABORT; Appended operation has LSN15. Remove T2 from transaction
table.

• Append CLR for LSN4; Appended operation has LSN16. Update T4 Last Write to n/a.

• Append T4-END ABORT; Appended operation has LSN17.

Part 2 (5 pts): Assume that the database crashes immediately after the REDO phase of ARIES,
and that the buffer pool has not had a chance to flush any of the dirty pages to disk before the
crash. Describe the recovery process from this second crash. You may answer this part in terms of
your solution to Part 1.
Nothing on-disk has changed. The recovery process is identical to Part 1.

7 of ??

UBIT:

Question E: Big Data
(20 points)

Answer True/False:

1. A star schema consists of a fact table and numerous dimension tables. [[TRUE]] / false

2. An advantage of column-wise storage is a reduced cost to access wide tables. [[TRUE]] / false

3. In a Semi-Join, the amount of data sent by the node evaluating the join is linear in the number
of distinct values of the join attribute. [[TRUE]] / false

4. In a Bloom-Join, the amount of data sent by the node evaluating the join is linear in the
number of distinct values of the join attribute. [[TRUE]] / false

5. For a selection operator implemented in parallel, doubling the size of the source relation
and also doubling the number of processors results in no change to the the processing time.
[[TRUE]] / false

6. For a projection operator implemented in parallel, doubling the size of the source relation
and also doubling the number of processors results in no change to the the processing time.
[[TRUE]] / false

7. For a sort operator implemented in parallel, doubling the size of the source relation and
also doubling the number of processors results in no change to the the processing time.
true / [[FALSE]]

8. For a join operator implemented in parallel, doubling the size of both source relations and
also doubling the number of processors results in no change to the the processing time.
true / [[FALSE]]

9. For a group-by aggregate operator implemented in parallel, doubling the size of both source
relations and also doubling the number of processors results in no change to the the processing
time. true / [[FALSE]]

10. Range (as opposed to hash) partitioning is guaranteed to produce uniformly distributed par-
tition buckets. true / [[FALSE]]

8 of ??

UBIT:

Grading Details

Part A.1 (Grader: Oliver): Full credit was given if the correct result appeared at the end
of the solution. Partial credit was given as follows:

• Solutions that treated union as commutative with join rather than distributive over join were
given 6 points.

• Partial solutions that brought the ∆ terms up but didn’t pull them out of the top level join
were given 10 points.

• 1-2 extra points were awarded at the grader’s discretion.

Part A.2 (Grader: Oliver): Full credit was given if the result clearly identified the possibility
of pushing algebraic aggregates up through the query tree rather than re-computing them from
scratch. Partial credit was awarded for recognizing that such a push could happen. A 1-3 point
penalty was applied for illegible solutions.

9 of ??

UBIT:

Relational Algebra Operator Reference

Selection σc(R) c : The selection condition
Projection πe1,e2,...(R) ei : The column or expression to project

Cartesian Product R1 ×R2

Join R1 ./c R2 c : the join condition
Aggregate πgb1,gb2,...,SUM(e1),...(R) gbi : group by columns, ei : expression

Set Difference R1 −R2

Union R1 ∪R2

Relational Algebra Equivalences

Rule Notes
σC1∧C2

(R) ≡ σC1
(σC2

(R))
σC1∨C2

(R) ≡ σC1
(R) ∪ σC2

(R) Note, this is set, not bag union
σC(R× S) ≡ R ./C S
σC(R× S) ≡ σC(R)× S If C references only R’s attributes, also works for joins
πA(πA∪B(R)) ≡ πA(R)
σC(πA(R)) ≡ πA(σC(R)) If A contains all of the attributes referenced by C

πA∪B(R× S) ≡ πA(R)× πB(S) Where A (resp., B) contains attributes in R (resp., S)
R× (S × T) ≡ (R× S)× T Also works for joins

R× S ≡ S ×R Also works for joins
R ∪ (S ∪ T) ≡ (R ∪ S) ∪ T Also works for intersection and bag-union

R ∪ S ≡ S ∪R Also works for intersections and bag-union
σC(R ∪ S) ≡ σC(R) ∪ σC(S) Also works for intersections and bag-union
πA(R ∪ S) ≡ πA(R) ∪ πA(S) Also works for intersections and bag-union

σC(γA,AGG(R)) ≡ γA,AGG(σC(R)) If A contains all of the attributes referenced by C

10 of ??

