
UBIT:

Question A: SQL
(30 points)

Using the procedure outlined in class, translate the following query into a relational algebra tree
or expression. Translate the query directly, without optimizing the resulting tree/expression.

SELECT partvalue.partkey , partvalue.supplyvalue

FROM (

SELECT partkey , sum(supplycost * avail_qty) AS supplyvalue

FROM partsupp ps, supplier s, nation n

WHERE ps.suppkey = s.suppkey AND s.nationkey = n.nationkey

AND n.name = ’ELBONIA ’

GROUP BY partkey

) partvalue ,

(

SELECT sum(supplycost * avail_qty) AS supplyvalue

FROM partsupp ps, supplier s, nation n

WHERE ps.suppkey = s.suppkey AND s.nationkey = n.nationkey

AND n.name = ’ELBONIA ’

) nationvalue

WHERE partvalue.supplyvalue > nationvalue.supplyvalue * 0.1

ORDER BY supplyvalue DESC

LIMIT 2;

There were three portions worth 10 points each. Minus 5 points if selection push down was used
and minus 3 points for missing operators.

• Main projection, Minus 3 if Limit and Order By were switched.

• PARTVALUE subselect, contained group by (Many notations were accepted, must be different
from NATIONVALUE). Minus 3 if group by operator is seperate from SUM and after SUM.
No optimizations were used.

• NATIONVALUE subselect, no optimizations were used.

1 of ??

CSE 4/562 - 2018 - Midterm 1

Question B: RA Equivalence
(40 points)

For each of the following pairs of bag-relational algebra expressions, either (1) prove that they
are equivalent (using ra-equivalences), or (2) show a counter-example (input tables on which the
expressions are not equivalent). Tables used have the following schemas:

R(A,B) S(C,D,E, F) T (C,D,E, F)

Part 1. πF (σB=C∧D=E∧A=3(R× (πC,D(S)× πE,F (T))))
?
= πF (((σA=3(R)) ./B=C (πC,D(S))) ./D=E (πE,F (T))) (15 points).

Equivalent. Need to show: Selection pushdown, join conversion, join/cross associativity

Part 2. πA (σA=C∧A=B∧D>3(R× (S] T)))
?
= πA ((σA=B(R)) ./A=C (πC(S] σC>3(T)))) (15 points).

Not equivalent, but sneakily so. Max 8 points if they try to prove equivalence. 10 points if they
catch the conflict (selection pushes down both sides of a union) and list an S with a C ¿= 3.

Part 3. (R ./ R)
?
= R (10 points).

Not equivalent. Counterexample: any R with two copies of the same row

2 of ??

UBIT:

Question C: Cost-Based Optimization
(30 points)

A database has gathered the statistics below regarding three tables in a restaurant reservation
database.

Table # of Rows Key
Reservation (resv) 20,000,000 n/a
Customer (cust) 1,000,000 〈id〉
Restaurant (rest) 10,000 〈id〉

Field # Distinct Min Max
resv.rest id 1,000 1 1,000
resv.cust id 10,000 1 1,000,000
resv.date 30 Jan 1 Jan 30
cust.id 1,000,000 1 1,000,000

cust.city 50 n/a n/a
cust.name 800,000 n/a n/a

rest.id 10,000 1 10,000
rest.offer date 30 Jan 1 Jan 30

Where available, primary (clustered) indexes are built on the key columns. There are also secondary
indexes built on Customer.city, Reservation.cust id and Reservation.rest id. No other in-
formation is available to the optimizer. Assume that enough memory is available for slightly more
than 5,000 tuples (say 5,100 tuples), independent of relation.

Questions in this section pertain to the following query:

πname,num(
Restaurant
./rest.offer date<resv.date

(
γresv.date,count(*) AS num(

Reservation
./cust.id=resv.cust id

σcust.city=‘Buffalo’(
Customer

)
)

)
)

3 of ??

CSE 4/562 - 2018 - Midterm 1

Part 1. Estimate the number of rows emitted by each operator in the plan above (10 points).
Operator Estimated Cardinality and Reason

σcust.city=‘Buffalo’ Assuming uniform distribution: 1,000,000
50 = 200, 000.

./cust.id=resv.cust id Join with a key: # of rows == # of rows in resv = 20,000,000
γresv.date,count(*) AS num Given exactly in the statistics: 30 tuples.

./rest.offer date<resv.date

Assuming a uniform distribution across dates, 50% chance of
passsing. Total number of tuples passed = 10, 000 · 30 · 0.5 =
150, 000

Part 2. For each of the operators listed in part 1, pick the algorithms that minimize the total
the total IO required to execute the plan as a whole. Justify your answer and be sure to state any
assumptions you make. (20 points).

In general, 2 points were awarded for picking a good algorithm, and 3 points were awarded for a
good justification. In a few cases, faulty assumptions led to wrong answers, in which case 3 points
were awarded if the answer fit the assumptions.

1. σcust.city=‘Buffalo’: To optimize the plan as a whole, this operator may be evaluated as a

secondary index scan, which reduces the number of tuples by a factor of 1
50 . 5/5 points were

awarded for observing this. However, since this still means roughly 20000 tuples read from
essentially random locations in the Customer table, the total number of IOs might still be
comparable to a full table scan. Full credit was also awarded for making this observation.

2. ./cust.id=resv.cust id: In memory algorithms (e.g., 1-pass hash) were not acceptable for this,
as neither input relation fits in memory. Candidate algorithms for this join included. . .

• Index Nested Loop Join. This was the obvious choice, and a baseline 4/5 points
were awarded to anyone who observed this and provided a reasonable justification (e.g.,
There’s a 2ndary index on rsrv.cust id). However, even filtered, there are an estimated
20,000 tuples on the other side of the join. That means a baseline of 20,000 index lookups
(each of which adds a fixed number of IOs based on index type). It also means that
each lookup requires either 2000 or 20 tuples worth of IO, depending on whether you
estimated selectivity using 1

#UNIQ or using 1
Max−Min . The result would be somewhere

on the order of either 400 million or 400 thousand tuples worth of IOs (plus 20k index
lookups), respectively. In the former case, INLJ is outperformed by BNLJ, SMJ, and
surprisingly 2P-HJ. In the latter case INLJ is optimal. Full points for observing this
fact.

• Sort-Merge Join. A common, although incorrect, argument in favor of sort merge
join was that the index on [cust]id meant that the data was in sorted order. This
is not applicable here because the index on Reservation is a secondary index (i.e., the
actual data is not stored in sorted order). Hence, at a minimum, Reservation needs to
be sorted. A further concern is that using an index scan for the first operator may not
emit results in sorted order, although the cost of sorting 20,000 records is comparatively
small. Nevertheless, sorting 20 million tuples with roughly 5k tuples of memory available
requires log5000 20000000 = 2 passes, or a total of 4 ·20000000 = 80,000,000 tuples worth
of IO. This is still better than the worse estimate for INLJ. 2 points for choosing sort-
merge join, and a full 5 for comparing it to any other join algorithm in terms of IOs.

4 of ??

UBIT:

• Block Nested Loop Join. With roughly 5k tuples worth of memory and customer
as the outer table, there would be 20000

5000 = 4 outer blocks, or roughly 80,000,000 tuples
worth of IOs as we first write, and then repeatedly read the contents of reservation.
Going the other way, we’d have 20000000

5000 = 4000 blocks, or roughly the same amount.
2 points for choosing sort-merge join, and a full 5 for comparing it to any other join
algorithm.

• 2-Pass Hash Join. Under a pessimistic assumption for the performance of index-nested
loop join, this was the best alternative, as it required only 40m+40k tuples worth of IO.

3. γresv.date,count(*) AS num: Full points for mentioning that, with 30 groups in the output, this
operator could be evaluated in memory.

4. ./rest.offer date<resv.date: 0 points for trying to use an equi-join algorithm (Hash join, SMJ),
or Index-Nested-Loop join. Block or regular nested loop join were preferred. Kudos to those
who noticed that one side of the join fit entirely in memory.

5 of ??

